The 3D Flow around Embedded Super-Earths

Jeffrey Fung (UToronto) - September 15, 2014 at 12:10 pm

The flow of disk material close to a planet, at separations of order r_H, the Hill radius, generates the largest transfer of angular momentum and mass between the planet and the disk. This flow is well studied in 2D under the thin disk approximation, which is appropriate for planets with r_H larger than h, the disk's scale height. For planets of a few Earth masses or less, however, they typically have r_H < h, and consequently one expects significant vertical variations in the flow. Using our GPU accelerated hydro code PEnGUIn, we perform 3D global simulations of an embedded 5 Earth mass planet, at a resolution of 27 cells per h. Using a detail picture of the flow field near the planet's orbit, we demonstrate that the 3D treatment for disk-planet interaction gives rise to new, and potentially dominant, aspects of both planetary migration and accretion.

The seminar will be held in B-1 Hearst Field Annex.


Return to seminar schedule