

HST - AO - Coronography

Exoplanets and circumstellar disks: Past and future science

G. Duchêne (Obs. Grenoble)

ONTHE FRINGE

Outline (2 classes)

- AO: why and how?
- AO: data processing
- Exoplanets: current observations
- Coronography: why and how?
- Disks: interpreting images
- The big picture (interferometry, ELTs)

ONTHE FRINGE

Outline (2 classes)

- AO: why and how?
- AO: data processing
- Exoplanets: current observations
- Coronography: why and how?
- Disks: interpreting images
- The big picture (interferometry, ELTs)

Adaptive Optics : Why and How?

Observing with a telescope

Back to basics: Fourier optics
 Telescope = circular pupil (usually)
 Image of a point source = Airy function

Observing with a telescope

Back to basics: Fourier optics

Telescope = circular pupil (usually)
Image of a point source = Airy function
Resolution: λ/D

Need for larger and larger telescopes!

Why not in real images?

 Airy rings not seen in direct ground-based images

Why not in real images?

- Airy rings not seen in direct ground-based images
- Atmospheric turbulence!
 Motion of air patches with different refractive index

Why not in real images?

- Airy rings not seen in direct ground-based images
- Atmospheric turbulence!
 Motion of air patches with different refractive index
- Seeing = time-averaged image of a point source
 Voigt profile (Gauss+Lorentz)

Atmosphere: a phase screen

Refraction ⇒ distortion of incoming (planar) wavefront

Atmosphere: a phase screen

- Refraction ⇒ distortion of incoming (planar) wavefront
- Slope of wavefront ⇒ image shift

QuickTime™ and a YUV420 codec decompresso are needed to see this picture.

Atmospheric turbulence

Strongly layered structure:
 Ground layer
 A few km altitude

Atmospheric turbulence

 Strongly layered structure: ➢ Ground layer 1.0 >A few km altitude 0.8

Atmospheric speckles

A single short exposure (0.137s)
 Many diffraction-limited "speckles"

Atmospheric speckles

A single short exposure (0.137s)
 Many diffraction-limited "speckles"
 Lots of motion with time
 Turbulence is very fast

Atmospheric speckles

A single short exposure (0.137s) *Many diffraction-limited "speckles"*Lots of motion with time *Turbulence is very fast*Average = seeing halo
Obvious problem for interferometry!

Some key parameters of turbulence:

Some key parameters of turbulence:

 $> r_0 = coherence length$

- Some key parameters of turbulence:
 - $r_0 = coherence \ length$ $t_0 = coherence \ time$

Some key parameters of turbulence:

 *r*₀ = coherence length

 *t*₀ = coherence time

 *θ*₀ = anisoplatic angle

Some key parameters of turbulence:
 > r₀ = coherence length
 > t₀ = coherence time
 > θ₀ = anisoplatic angle
 Typically r₀ = 10-20cm in V
 > t₀ = few ms
 > θ₀ = few arcsec

l (r)

Atmosphere: basic principles

• Strong dependence on wavelength: $r_0 \propto \lambda^{6/5}$

Atmosphere: basic principles

Strong dependence on wavelength:

 *r*₀ ∝ λ^{6/5}

 *r*₀ = 15cm at 0.5 μm (~0.7" seeing)

 *r*₀ = 90cm at 2.2 μm

 *r*₀ = 5.5m at 10 μm

Atmosphere: basic principles

Strong dependence on wavelength:
>r₀ ∝ λ^{6/5}
>r₀ = 15cm at 0.5 μm (~0.7" seeing)
>r₀ = 90cm at 2.2 μm
>r₀ = 5.5m at 10 μm
Large telescopes are diffraction-limited in the mid-IR

Atmosphere: OTF

 In practice, atmosphere acts a low-pass filter in long integrations

Atmosphere: OTF

 In practice, atmosphere acts a low-pass filter in long integrations

Why do we care?

Examples of seeing-limited science: From Solar System to distant galaxies!

Examples of seeing-limited science:
From Solar System to distant galaxies!
Most disks are 1" across
Need to beat the atmosphere!

So what do we do?

Place telescope above atmosphere >Hubble Space Telescope

So what do we do?

- Place telescope above atmosphere
 >Hubble Space Telescope
- Do very fast imaging to freeze the atmospheric turbulence

Speckle interferometry

So what do we do?

- Place telescope above atmosphere
 >Hubble Space Telescope
- Do very fast imaging to freeze the atmospheric turbulence
 - Speckle interferometry
- Correcting the atmosphere turbulence
 Adaptive optics

Space-based imaging

Problem solved (!!)

Space-based imaging

- Problem solved (!!)
- Advantage:
 - Long-term stability of instruments

Space-based imaging

- Problem solved (!!)
- Advantage:
 - Long-term stability of instruments
- Not necessarily the easiest thing to do:
 Very costly
 'Small' telescopes (2.5m for HST)
 Instrument not easily repairable (ACS ③)

Speckle interferometry: fake

Need to obtain images very fast!

 Remember t₀ = few ms

Speckle interferometry: fake

- Need to obtain images very fast!
 > Remember t₀ = few ms
- Post-processing:
 Frame selection: ~5% with a
 - A selection. ~37% with dominant single speckle
 > Shift-and-add all frames

Speckle interferometry: fake

- Need to obtain images very fast!
 Remember t₀ = few ms
 Post-processing:
 Frame selection: ~5% with a dominant single speckle
 Shift-and-add all frames
- Maintains diffraction limit!

Speckle interferometry: real

 Much better: Fourier Transform each frame and add all interferograms

Speckle interferometry: real

- Much better: Fourier Transform each frame and add all interferograms
- Spatial shift ⇔ phase shift
 - All speckles contribute!

Speckle interferometry

Advantages:
 ➢ Recovers highest spatial frequency
 ➢ Can resolve down to λ/2D

Speckle interferometry

Advantages:
Recovers highest spatial frequency
Can resolve down to λ/2D
Limitations:
Low contrast (3-5 mag)
Very low efficiency
5' for 30s at Keck!!

 Real-time correction of turbulence!

- Real-time correction of turbulence!
- Deformable mirror

- Real-time correction of turbulence!
- Deformable mirror
- Wavefront sensor

- Real-time correction of turbulence!
- Deformable mirror
- Wavefront sensor
- Fast computer

- Real-time correction of turbulence!
- Deformable mirror
- Wavefront sensor
- Fast computer
- Military: 1972!
- Astronomy: 1989…

Incoming wavefront

Deformable mirror Corrected wavefront

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

Speckle cloud Airy pattern!

Adaptive optics

Advantages:
 > Obtain long exposures!
 > Can be high quality at long wavelength

Adaptive optics

Advantages:
Obtain long exposures!
Can be high quality at long wavelength
Limitations:
Technical/computing challenges
Need a bright reference (guide) star
No (little) visible light correction

HST/AO/speckle interferometry

HST/AO/speckle interferometry

 Adaptive optics correction is always partial (limited bandwidth)

Not as perfect as HST images

- Adaptive optics correction is always partial (limited bandwidth)
- Not as perfect as HST images
 Problem for high contrast imaging

Measure of AO correction quality:
 Ratio of peak image to Airy peak of same total intensity
 Strehl ratio

 Range: 0-100%

Measure of AO correction quality:
Ratio of peak image to Airy peak of same total intensity
Strehl ratio

Range: 0-100%
Images from ~10%
50%

Strehl Ratio > ~10%
 ⇔ diffraction-limited

How good can it get?

How good can it get?
 >SR~60% at 2 μm and up to 90-95% at 10 μm

λ / r0 ~ λ / D in the MIR

Adaptive optics: anisoplatenism

It is possible to guide off-axis
 >AO correction depends on distance!

Adaptive optics: anisoplatenism

It is possible to guide off-axis >AO correction depends on distance!

– Strehl ratio

Adaptive optics: anisoplatenism

- It is possible to guide off-axis
 AO correction depends on distance!
 Strehl ratio
 - Core shape

graphy: disks and planets

Adaptive optics: Zernike modes

In practice, measure WFS and determine shape to apply to DM

Adaptive optics: Zernike modes

 In practice, measure WFS and determine shape to apply to DM
 Decomposition in independent "modes"

Adaptive optics: Zernike modes

 In practice, measure WFS and determine shape to apply to DM > Decomposition in independent "modes" Zernike modes ➤ Tip-tilt > Defocus *⊳etc…*

How many actuators do we need?

How many actuators do we need?
 > Sufficiently to map turbulence
 > Roughly speaking: N ~ (D/r0)^2

How many actuators do we need?
 Sufficiently to map turbulence
 Roughly speaking: N ~ (D/r0)^2
 With N actuators, can correct N modes

 High-N allows high frequency correction

How many actuators do we need?
Sufficiently to map turbulence
Roughly speaking: N ~ (D/r0)^2
With N actuators, can correct N modes

High-N allows high frequency correction

VERY difficult in optical!!
Need thousands of (very fast) actuators

The chase is on worldwide for:
 Faster corrections
 Higher N

The chase is on worldwide for:
 Faster corrections

 More sensors/actuators and higher rate implies many more calculations!

Reconstruction computational burden

1 GFlop

More sensors/actuators and higher rate implies many more calculations!
 Faster and faster real-time computers
 Need for optimized methods!

Wavefront slope ⇔ image displacement

- Wavefront slope <> image displacement Map the wavefront with series of lenslets >Measure spatial displacement >Infer wavefront > Modify DM
 - Wave-front Lenslets Detector

Wavefront slope ⇔ image displacement
 Map the wavefront with series of lenslets
 Measure spatial displacement
 Infer wavefront
 Modify DM

Displacement measured on CCD
 → 4 pixels per lenslet
 > Linear combination of fluxes ⇒ offset

Wavefront curvature ⇔ change of focus
 More/less flux ahead/past nominal focus

Vibrating membrane + photodiodes
 ➢ Measure flux around focus
 ➢ Infer wavefront ⇒ modify DM

Vibrating membrane + photodiodes
 ➢ Measure flux around focus
 ➢ Infer wavefront ⇒ modify DM

WFS: curvature vs. SH

Curvature system (F. Roddier) More light efficient

WFS: curvature vs. SH

Curvature system (F. Roddier)
 More light efficient
 Shack-Hartmann (military)
 Can be scaled to large number of subapertures (e.g., large telescopes)

WFS: curvature vs. SH

Curvature system (F. Roddier)
More light efficient
Shack-Hartmann (military)
Can be scaled to large number of subapertures (e.g., large telescopes)
All planed systems are SH (or similar: pyramid sensor)

Deformable mirrors (I)

The original design:
 Thin deformable mirror
 Piezo-electric supports that can move up or down based on applied voltage

Deformable mirrors (II)

A minor variation:

Bimorph crystal that bends depending on applied voltage (no mechanical support)

Deformable mirrors (II)

A minor variation:
 Bimorph crystal that bends depending on applied voltage (no mechanical support)

Amplitude: several μm Frequency: several kHz

Deformable mirrors (III)

The new generation: *Micro-mirrors (MEMs) from communications*

Deformable mirrors (III)

The new generation:
 Micro-mirrors (MEMs) from communications
 Carved on a microchip!
 Gain in size
 Electrostatically Attachment Membrane mirror

HST/AO/coronography: disks and planets

Continuous mirror

Deformable mirrors (III)

Still improving!

Deformable mirrors (IV)

The next generation?

Deformable mirrors (IV)

The next generation?
 Ferro-fluid in a magnetic field can take a pre-defined shape
 Amplitude? Frequency?

Deformable mirrors (IV)

The next generation?
 Ferro-fluid in a magnetic field can take a pre-defined shape
 Amplitude? Frequency?

Other ideas to come!

Adaptive optics: performances

VLT/NAOS

ESO PR (hoto 551/01 (3 December 2001)

© Buropean Southern Observatory

Adaptive optics: performances

VLT/NAOS

© Baropean Southern Observatory

ESO PR Photo 55U01 (3 December 2001)

Adaptive optics: limitations

Need a bright star for AO correction *Limited sky coverage*

Adaptive optics: limitations

- Need a bright star for AO correction
 Limited sky coverage
- Sensitive to background (
 [®] Moon!)

WFS: typical regime

WFS usually work in (white) visible light Fast, low readout cameras

WFS: typical regime

WFS usually work in (white) visible light

 Fast, low readout cameras

 Science camera usually works in NIR

 Atmosphere too fast in visible
 Simple separating dichroic

WFS: typical regime

WFS usually work in (white) visible light

Fast, low readout cameras

Science camera usually works in NIR

Atmosphere too fast in visible
Simple separating dichroic

Strong requirement:

Source must be (relatively) bright in visible

WFS: using IR light

Embedded and isolated objects cannot be used as AO guide stars

WFS: using IR light

- Embedded and isolated objects cannot be used as AO guide stars
- VLT/NACO offers an IR WFS

Dichroic Name	Reflected light to the WFS	Efficiency	Transmitted light to CONICA	Efficiency
VIS	V,R,I 0.45 – 0.95 μm	90%	J, H, K, L, M 1.05 – 5.0 μm	90%
N20C80	V,R,I,J,H,K 0.45 – 2.55 μm	20%	V, R, I, J, H, K 0.45 – 2.55 μm	80%
N90C10	V,R,I,J,H,K 0.45 – 2.55 µm	90%	V, R, I, J, H, K 0.45 – 2.55 μm	10%
ЈНК	I.J,H,K 0.80 – 2.55 μm	90%	L, M 2.8 – 5.5 μm	90%
К	Κ 1.9 – 2.55 μm	90%	V, R, I, J, H 0.45 – 1.8 μm	90%

WFS: using IR light

- Embedded and isolated objects cannot be used as AO guide stars
- VLT/NACO offers an IR WFS

	Dichroic Name	Reflected light to the WFS	Efficiency	Transmitted light to CONICA	Efficiency
	VIS	V,R,I 0.45 – 0.95 μm	90%	J, H, K, L, M 1.05 – 5.0 μm	90%
	N20C80	V,R,I,J,H,K 0.45 – 2.55 μm	20%	V, R, I, J, H, K 0.45 – 2.55 μm	80%
Useful If	→ N90C10	V,R,I,J,H,K 0.45 – 2.55 μm	90%	V, R, I, J, H, K 0.45 – 2.55 μm	10%
v-N > 5 may	ЈНК	I.J.H.K 0.80 – 2.55 μm	90%	L, M 2.8 – 5.5 μm	90%
FOST	к	K 1.9 – 2.55 μm	90%	V, R, I, J, H 0.45 – 1.8 μm	90%
4~1					

 Another option: create an artificial star!

Another option: create an artificial star!
 Rayleigh Laser

Another option: create an artificial star!
 Rayleigh Laser
 Sodium layer

More complex system!

 And this does not solve all problems...

- And this does not solve all problems...
- Light propagates the same way up and down

>No measurement of tip-tilt!

- And this does not solve all problems...
- Light propagates the same way up and down
 No measurement of tip-tilt!
- Still needs a (fainter) reference star for tip-tilt

 Another problem: not all turbulence is corrected
 > 'cone effect'

Another problem: not all turbulence is corrected
 'cone effect'
 Crucial for future large telescopes (30m+)

- Another problem: not all turbulence is corrected
 > 'cone effect'
- Crucial for future large telescopes (30m+)
- NB: elongation of spot is not negligible either...

- Notwithstanding these problems, LGS is still a major improvement!
 - Faint targetsSky coverage

- Notwithstanding these problems, LGS is still a major improvement!
 - Faint targets
- Sky coverage
 All major observatory has/plans an LGS

Best now: Lyot Project on AEOS

- 3.6 m telescope atop Haleakela (Maui)
 941 actuator AO system
- ➢ 80-90% Strehl at H-Band

Best now: Lyot Project on AEOS

- 3.6 m telescope atop Haleakela (Maui)
 941 actuator AO system
- > 80-90% Strehl at H-Band

∆M=15.3, sep=2"

Best now: Lyot Project on AEOS
 Substantial correction in the visible

Goal SR = 95% or more
 VLT/SPHERE, Gemini/GPI

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture. QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

AO: different context (I)

AO is not used only for distant stars

AO: different context (I)

 AO is not used only for distant stars
 Sun observation also suffer from turbulence (even more!)

AO: different context (I)

- AO is not used only for distant stars
 Sun observation also suffer from turbulence (even more!)
 - > 'guide source': solar granulation!

AO: different context (II)

AO is also used to image the eye

AO: different context (II)

AO is also used to image the eye
 Correct for imperfections in eyeball
 Different set of constraints (larger stroke, slower rate)

AO: different context (II)

AO is also used to image the eye
 Correct for imperfections in eyeball
 Different set of constraints (larger stroke, slower rate)

Used for eye surgeries!

Adaptive Optics : Data processing

- Images are images...
- Same basic reduction steps

- Images are images...
- Same basic reduction steps
- If sufficient for scientific purposes, aperture photometry is OK
 - > Watch for aperture corrections!

- Images are images...
- Same basic reduction steps
- If sufficient for scientific purposes, aperture photometry is OK
 - >Watch for aperture corrections!
- Most of the time PSF fitting or subtraction is needed, or deconvolution

HST vs AO: an example

HST vs AO: an example
 AO has higher resolution but more complex PSF and higher background

HST PSF fitting

It can be useful to fit a PSF:
 To remove a star and search for faint object around it
 For tight binary systems

HST PSF fitting

It can be useful to fit a PSF:
To remove a star and search for faint object around it
For tight binary systems
Relatively easy for HST
Tinytim (OK for simple analysis)
Subsequent orbit (better accuracy)

Adaptive optics PSF

Things are more complicated for AO

Adaptive optics PSF

Things are more complicated for AO
Depends on
Guide star (brightness, color)
Distance to guide star
Atmospheric conditions
Airmass

Adaptive optics PSF

Things are more complicated for AO
Depends on
Guide star (brightness, color)
Distance to guide star
Atmospheric conditions
Airmass
TIME!!!

4 images taken in a 20s sequence

4 images taken in a 20s sequence

As a function of time:
 Strehl ratio varies
 Specific mode correction varies
 Speckle pattern changes

As a function of time:
Strehl ratio varies
Specific mode correction varies
Speckle pattern changes
Rule of thumb:
Close in time (simultaneous!)
Similar colors/brightness

... but that's not enough!

… but that's not enough!
Same star, ~10s time difference!

How to deal with variable PSF?

- How to deal with variable PSF?
- Create a database of PSFs with many observations and search through it

- How to deal with variable PSF?
- Create a database of PSFs with many observations and search through it
- Long time difference doesn't matter as long as it works!

- How to deal with variable PSF?
- Create a database of PSFs with many observations and search through it
- Long time difference doesn't matter as long as it works!
- NB: curvature systems give good estimate of PSF

ONTHE FRINGE

Some speckle can live a 'long time'

Some speckle can live a 'long time' Semi-static speckles

These features can live several minutes

These features can live several minutes
 Easy to be confused with actual faint companions

- These features can live several minutes
- Easy to be confused with actual faint companions
- Potential danger for systematic searches
 Need to get rid of them!!

Problem: they are not randomly located

Problem: they are not randomly located
 Always on Airy ring!
 'Pinned speckles'

v: disks and planets

- Problem: they are not randomly located
 - Always on Airy ring!
 'Pinned speckles'
 One can't average
- One can't average them out!!!

v: disks and planets

In other word, adding more data will not help us here...

- In other word, adding more data will not help us here...
 - **Unusual behavior**

Specific techniques

Simply subtracting a PSF is not enough
 Need a more sophisticated method!

Simply subtracting a PSF is not enough
 Need a more sophisticated method!
 HST: roll subtraction
 2 visit with different telescope orientation

- Simply subtracting a PSF is not enough
 Need a more sophisticated method!
- HST: roll subtraction
 - 2 visit with different telescope orientation
 PSF features fixed
 Real companions move!

AO-equivalent of HST roll subtraction?

AO-equivalent of HST roll subtraction?
 Angular Differential Imaging (ADI)

AO-equivalent of HST roll subtraction?
 Angular Differential Imaging (ADI) Not possible everywhere
 Need to rotate field but not pupil

1. remove a smooth axisymmetric pattern from all images

- 1. remove a smooth axisymmetric pattern from all images
- 2. a local estimate from all other rotated

Finally, add up al images for net gain!

Finally, add up al images for net gain!

With this technique, noise is again close to photon noise
 SNR ∝ t^{1/2}

- With this technique, noise is again close to photon noise
- SNR \propto t^{1/2}
- Different flavors of ADI, improvements with experience!

Alternative: use λ dependence

Alternative: use λ dependence

Speckles are diffraction features
 Their location varies with wavelength!

Alternative: use λ dependence

- Speckles are diffraction features
 Their location varies with wavelength!
- On the other hand, real companions do not move...
- It should be easy to disentangle!
- This is the basis for Simultaneous Differential Imaging (SDI)

Use wavelength dependence

SDI now offered as a NACO mode

• Select 2 frames and 'stretch' one of them radialy to compensate for $\Delta\lambda$

 Select 2 frames and 'stretch' one of them radialy to compensate for Δλ
 Adjust flux and subtract!

 Select 2 frames and 'stretch' one of them radialy to compensate for Δλ
 Adjust flux and subtract!

Even better: combine SDI and ADI Take advantage of both techniques

Even better: combine SDI and ADI Take advantage of both techniques

Use linear polarization!
 Dual beam to avoid losing 50% of light...

Use linear polarization!
 Dual beam to avoid losing 50% of light...
 Starlight is un-polarized whereas planets or disks are polarized

- ◆ Use linear polarization!
 ◆ Dual beam to avoid losing 50% of light...
- Starlight is un-polarized whereas planets or disks are polarized
- Not a natural thing to do, but it does improve contrast substantially
 - Planned for all next generation AO systems

 There is a technique, designed for over 75 years, to improve contrast
 Coronography!

- There is a technique, designed for over 75 years, to improve contrast
 Coronography!
- Can be combined with all these techniques
- See tomorrow's course

Beyond imaging...

 Characterization of planets implies spectroscopy (see tomorrow's course)

Beyond imaging...

- Characterization of planets implies spectroscopy (see tomorrow's course)
- Longslit spectroscopy suffers from strongly chromatic effects

Beyond imaging...

HST/AO

- Characterization of planets implies spectroscopy (see tomorrow's course)
- Longslit spectroscopy suffers from strongly chromatic effects

Integral Field Spectroscopy is needed

A quick bibliography

- Speckle interferometry
 - ➤ Labeyrie (1970), Patience et al. (1998)
- Adaptive Optics
 - > Textbooks by F. Roddier, or J. Hardy, or R. Tyson
 - > http://cfao.ucolick.org ⇒ many links worldwide
- Angular Differential Imaging
 - Marois et al. (2006), Lafrenière et al. (2007)
- Simultaneous Differential Imaging
 - ➢ Racine et al. (1999)
 - Lenzen et al. (2004), Marois et al. (2004)

