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Before getting started let’s make some definitions:

1. We distinguish between probabilities, denoted by the letter P , and probability density func-

tions, denoted by the Greek letters ψ or φ. We also use what we call a “probability function”

ρ, which is like a PDF except that it is not normalized, so that its integral is not equal to

unity.

2. The subscript ∗ means the true values. The subscript d means the least-squares value derived

from the data. (They would be equal if there were no noise).

3. We have M datapoints, dm. The set of M datapoints is indicated by curly brackets, i.e. {d}.

4. To make things specific, we’ll assume Gaussian noise for the data.

1. PAIR OF SAMPLE MODELS

We have a dataset withM data points dm taken at times tm. We want to compare two models,

each of which has a single parameter:

1. Model A describes the data by a constant, µ∗. We estimate µ∗ from the mean of the dm, i.e.

µd =
∑

(dm)
M .

2. Model B describes the data by a slope λ∗ with no zero offset. We estimate λ∗ from the least

squares solution, which gives λd =
∑

tmdm∑
t2m

.

2. BAYESIAN APPROACH

This is excerpted from the beginning of chapter 4 in Sivia.

In principle, Bayes’ theorem allows one to specify the probability that a model is correct.

Specifically, Bayes’ theorem says for model A and data d that

P (A | d) = P (d | A)
P (d)

P (A) (1)

If one has a model A, then one has to be able to calculate P (d | A); this is central to fitting data

to a model. Similarly, one ought to have some idea of the prior P (A). So all one needs to know is
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P (d), which is called the “evidence”. Unfortunately, as we discuss below in §6, it is unusual to be

able to know P (d). So we can hardly ever calculate P (A | d).

Should we give up? NO!! We can still use Bayes’ theorem to compare pairs of models by

taking the ratio, because P (d) cancels out and we get

R =
P (A | {d}, σ)
P (B | {d}, σ) =

P ({d} | A, σ)
P ({d} | B, σ)

P (A)

P (B)
(2)

Here we’ve included the noise level σ for the data as a specified parameter.

We need the likelihood probabilities for the data [P ({d} | A, σ), P ({d} | B, σ)]. However, when
we ask ourselves what these symbols mean, we think: “The probability of obtaining a given piece

of data dm depends not only on its associated σm, but it also depends on the true value of what we’re

measuring.” That is, our brain is telling us that we need to write [P ({d} | A, µ∗, σ), P ({d} | B, λ∗, σ)]
instead of [P ({d} | A, σ), P ({d} | B, σ)]. But doing this puts us in the following quandary: we want

to which model (A or B) is better, independent of the numerical values of the true model parameters

(µ∗ or λ∗)), because we don’t know what these true values are—we only have estimates for them in

the form of the least-square fit results µd and λd.

What should we do? Let’s consider Model A. The needed likelihood probability P ({d} | A, σ)
is for all possible values of µ∗, not just any assumed one or the most likely one from our data (i.e.,

µd). To obtain its probability P ({d} | A, σ) we need to consider the PDF φ({d} | A, µ∗, σ) and

marginalize (integrate) over µ∗. But we can’t marginalize over the given quantity µ∗ (i.e., we can’t

marginalize over a quantity on the right-hand side of the “ | ”); rather, we can only marginalize

over a variable in a joint PDF φ({d}, µ∗ | A, σ).

That is, we need to evaluate

P ({d} | A, σ) =
∫

φ({d}, µ∗ | A, σ)dµ∗ (3)

which means that, first, we need to obtain the joint PDF inside the integral from the product rule:

φ({d}, µ∗ | A, σ) = φ({d} | A, µ∗, σ)× ψ(µ∗ | A) (4)

The first term on the right-hand hand side contains µ∗ as a given quantity, However, we don’t

know µ∗, i.e. we don’t know φ({d} | A, µ∗, σ); we only know φ({d} | A, µd, σ). We relate these using

the following, which is pretty obscure but will become clear when we do the Gaussian statistics

example:

φ({d} | A, µ∗, σ) = P ({d} | A, µd, σ)×
φ(µ∗ | A, µd, δµd)

φ(µ∗ | A, µd, δµd)|µ∗=µd

(5)
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The term in the denominator, φ(µ∗ | A, µd, δµd)|µ∗=µd
, is a PDF evaluated at the specific value

µ∗ = µd. Thus, it is a probability, not a PDF, and we could have written P (µ∗ = µd | A, µd, δµd)
(but without this little remark this wouldn’t be very clear). Let’s define the “probability function”

ρ:

ρ(µ∗ | A, µd, δµd) =
φ(µ∗ | A, µd, δµd)

φ(µ∗ | A, µd, δµd)|µ∗=µd

(6)

This is like a PDF because it expresses how things change with µ∗. However, its integral over µ∗
isn’t equal to unity, so it’s not a PDF. In particular, its maximum value, which occurs at µ∗ = µd,

is unity. Plugging all this into equation 4, we get

φ({d}, µ∗ | A, σ) = P ({d} | A, µd, σ)× ρ(µ∗ | A, µd, δµd)× ψ(µ∗ | A) (7)

Now we can integrate over µ∗:

P ({d} | A, σ) = P ({d} | A, µd, σ)×
∫

ρ(µ∗ | A, µd, δµd)
︸ ︷︷ ︸

first term

×ψ(µ∗ | A)
︸ ︷︷ ︸

prior

dµ∗ (8)

and similarly for Model B

P ({d} | B, σ) = P ({d} | B, λd, σ)×
∫

ρ(λ∗ | B, λd, δλd)× ψ(λ∗ | B) dλ∗ (9)

We could now plug equations 8 and 9 into equation 2, which would result in complicated-looking

thing, which could be evaluated numerically given any kind of statistics.

However, let’s assume the usual Gaussian statistics with variance σ2 for the data, which makes

things lots easier:

P (dm | A, µd, σm) =
1√

2πσm
exp−

(
(dm − µd)

2

2σ2m

)

(10)

The probability for the set of data {d} is the product, so this gives for the term in front of the

integral in equation 8

P ({d} | A, µd, σ) =
∏

m

P (dm | A, µd, σm) (11)

Given the Gaussian statistics for the data, the PDF for µ∗ is also Gaussian. Having applied least

squares for Model A, the data provide us the best fit for µ∗, which we denote µd; and its uncertainty,

δµd. These define the posterior PDF for µ∗:
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φ(µ∗ | A, µd, δµd) =
1√

2π δµd
exp−

(
(µ∗ − µd)

2

2δµ2d

)

(12)

Dividing this by the function evaluated at (µ∗ = µd) gives

ρ(µ∗ | A, µd, δµd) = exp−
(
(µ∗ − µd)

2

2δµ2d

)

(13)

This is the “first term” under the integral in equation 8. For the “prior” term in equation 8, let’s

assume a uniform prior φ(µ∗ | A) = constant between (µmin, µmax) and zero elsewhere:

φ(µ∗ | A) =
1

µmax − µmin
=

1

∆µ
(14)

We substitute these into equation 8 and obtain (finally!)

P ({d} | A, σ) = P ({d} | A, µd, σ)
∆µ

∫ µmax

µmin

exp−
(
(µ∗ − µd)

2

2δµ2d

)

dµ∗ (15)

or

P ({d} | A, σ) = P ({d} | A, µd, σ)
√
2π

δµ

∆µ
(16)

Here we have assumed ∆µ≫ δµ, so we can take the limits of the integral as ±∞. For the ratio of

equation 2, we have

R =
P (A | d)
P (B | d) =

P (A)

P (B)

P ({d} | A, µd, σ)
P ({d} | B, λd, σ)

δµ

∆µ

∆λ

δλ
(17)

Some comments:

1. The ratio is scale-invariant, as it must be for it to make sense.

2. In equation 15 we assumed ∆µ ≫ δµd, i.e. that the experimental errors are small compared

to the range over which the prior is nonzero. If this weren’t the case, the integral in equation

15 would be an error function and would depend on the limits. This implicit assumption

is the useful case, because if the experimental errors are large then the experiment cannot

provide any additional information to what the prior already provides.

3. The first ratio on the right hand side of equation 17 is the ratio of priors for the two models.

Typically, you don’t prefer one over the other so this ratio is unity. However, you might have
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prior information that favors one over the other (like your girlfriend invented one and your

ex-girlfriend the other). . .

4. The second ratio on the right hand side of equation 17 is the ratio of the likelihoods. Each

likelihood is the product of M terms, where M is the number of datapoints dm. Because of

Gaussian statistics, each datapoint dm has a probability P (dm | A, µd, σ) given by equation

10. To obtain the likelihood, we multiply all the P (dm | A, µd, σ), as in equation 11. In

practice, and also in the analytical development of maximum likelihood, we take the log of

each term, add, and then exponentiate; the result is, of course, identical. The likelihood is

the sum of the log of the P (dm | A, σm, µd), so apart from constants like
√
2π we have

lnP ({d} | A, µd, σ) ∝
∑

m

(dm − µd)
2

2σ2m
=
χ2(A, µd)

2
(18)

5. Let’s plug equation 18, evaluated for both Models A and B, into equation 17:

RA/B =
P (A | d, σ)
P (B | d, σ) =

P (A)

P (B)
exp

(−χ2(A, µd) + χ2(B, λd)

2

)
δµ

∆µ

∆λ

δλ
(19)

To summarize, we can write equation 17 in words:

R = [ratio of priors]× [ratio of exp(−χ
2

2
)]× [ratio of (δparams/∆params)] (20)

3. NUMERICAL EXAMPLE

Figure 1 shows our numerical experiment for the above. We chose model B for the example.

We tried two numerical experiments, distinguished only by the different values of σdata = [1.0, 10.0].

We used 64 data points. The reduced chi-squares for Model A are about 1.4 and 10 for these two

experiments, while those for Model B are both 1.4. The chi-squares are these numbers multiplied by

63, so they are large! Calculating R from equation 19 involves exponentiating these large numbers,

which exceed single precision float ranges. So we can only calculate using logarithms.

For σd = 1.0, we find

ln(RA/B)σdata=1 = −263 ; RA/B ∼ 10−114 (21)

This means that the probability of model A, the constant fit, being correct is totally negligible, as

it should be for this visually-obvious example!

For σd = 10.0, we find
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Fig. 1.— Top panels: Data versus time for two values of σdata whose ratio is 10. Columns: The low σdata = 1 case

is the left column of panels. We consider two model fits, A (a constant µ—the dash-dot line in the top panels) and

B (a slope λ—the solid line in the top panels). The reduced χ2 for the two fits and the two cases of σdata are noted

in the top panels. Middle row of panels: The probability function ρ(µ∗ | A,µd, δµd) for the two σdata cases. Because

of the Gaussian statistics, each probability function is a Gaussian with dispersion δµ, which is noted on the plots.

Bottom row: As for the middle row, but for Model B and λ∗.
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ln(RA/B)σdata=10 = −1.2 ; RA/B ∼ 0.31 (22)

So with low signal/noise, we find that the probability of model A, the constant fit, being correct is

0.31 for this particular trial. Other trials, with different noise, typically find smaller probabilities.

The lesson here is that as we reduce σd by accumulating more data, or obtaining higher-quality

data, the exponential term in equation 19 gets rapidly smaller, favoring model B.

Apart from the χ2, the favoring of a model is proportional to its ratio δµ
∆µ . If the model’s prior

allows a wide possible range for the parameter, it is less favored; this makes sense, because it means

that the model isn’t very specific regarding its predictions.

4. CONVENTIONAL (FREQUENTIST) STATISTICS: THE F-TEST

With conventional statistics, models are compared using the F-test. The F-test uses R
χ̂2
, the

ratio of the two reduced chi-squares for the best fit and, also, the degree of freedom (∼ number

of datapoints) for each fit. It does not marginalize over the fitted parameters as is done in the

Bayesian approach.

The relevant statistic f is the probability (fraction of cases) for which the ratio is smaller than

the specified value; f ranges from 0 to 1. If the f statistic is small, then the probability of the

ratio being smaller than the observed ratio is itself small, meaning it’s hard to do better, so that

the numerator of the ratio is a better fit than the denominator.

For our case σdata = 1.0, R
χ̂2

∼ 7.2. We find f = 1.0; it can’t get any larger! This means

it’s hard to do worse than we observed, meaning model A is terrible with respect to model B. In

contrast, for our case σdata = 10.0, R
χ̂2

∼ 1.05, which yields f = 0.58. So 58% of the time we

would find a larger ratio, meaning B is favored over A, but not by much..

To do the f -test In IDL, you use the function f pdf. Also see Numerical Recipes and Bevington.

5. COMPARING PAIRS OF MODELS WITH MULTIPLE PARAMETERS

5.1. Bayesian Approach

The above refers to models having a single parameter. For models with multiple parameters,

you must integrate over all of them in equation 8 above. If the statistics are Gaussian, things are

simpler: first use least squares to find the combination of parameters that maximize the likelihood;

above, this is equivalent to finding (µd, λd). Then do the multidimensional integral as in equation

8. In a multiparameter problem, it helps to choose parameters that are orthogonal over the interval

of the data because then you have a series of one-parameter integrals instead of a multiparameter
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integral.

5.2. Frequentist Approach

You use the best fit results—no marginalization over the fitted parameters. This is easier.

6. THE EVIDENCE P (d)

See Sivia, page 88. In the introduction, we mentioned the importance and difficulty of the

factor P (d) in Bayes’ theorem. By treating pairs of models, we managed to ignore it. What is this

factor? It expresses the probability of obtaining the given data, regardless of the model. Suppose

we have N models; for concreteness in the discussion, let’s take N = 3, the models being A,B,C.

The models A,B,C are mutually exclusive, and by assumption there are no other possibilities.

One, or some combination, must be correct, so we must have

P (A) + P (B) + P (C) = 1. (23)

or, since we have the data,

P (A | d) + P (B | d) + P (C | d) = 1 (24)

From Bayes’ theorem,

P (A | d) = P (d | A)
P (d)

P (A) (25)

etc., so we can write

P (d | A)P (A) + P (d | B)P (B) + P (d | C)P (C)
P (d)

= 1 (26)

We can calculate all ratios such as P (A | d)
P (B | d) , so we have enough information to calculate the

actual values P (A) (same as P (A | d)). So, if we know the priors P (A), etc., we can calculate P (d).

Eureka—we know what’s going on in absolute terms!

But wait: suppose there’s another model, D, which we haven’t considered and don’t know

about. Then our calculations are all for naught. We can never be sure that D doesn’t exist, and

that D isn’t, in fact, the correct model. So obtaining actual probabilities like P (A) is essentially

impossible. The one exception is when you are comparing two models, A and Ā, and when those

are the only two possibilities. This is the “disease test” illustration that forms the beginning of

every text on Bayesian statistics (except for Sivia’s!).


