Wavelets

E. Rosolowsky

1. Basic Signal Processing

A large section of astrophysics is dedicated to rigorous analysis of astrophysical signals. Signal
processing represents the full array of techniques that are used to extract meaningful results from
telescope data that are often of highly dubious quality. This section of the course will focus on
signal extraction, filtering and compression using wavelets. Wavelets are an increasingly popular
set of functions that are used in a fashion quite similar to the Fourier transform. However, because
of the differences between the functions used, wavelets have strengths in areas that the Fourier

transform does not.

The Fourier transform is an excellent and well-used signal processing technique. As an example,
it is ideal for finding periodic signals in very noisy data (like pulsar data). Effectively, the signal
is moved from the time domain, where the power in the signal is scattered throughout the time
sample, to the frequency domain where all the power in the signal is concentrated at one or a few
frequencies. This makes it relatively easy to identify the signal. This represents signal extraction.
To filter the data, we’d make the assumption that all the frequencies that don’t have obvious signal
are just the result of noise and set those to zero. With an inverse Fourier transform, the signal,
with the zeroed out frequencies can be moved back into the time domain where the periodic signal
will magically appear and be noise free. Finally, signal compression: if the signal is represented
by only a few frequencies, then we could adequately represent the signal with just a few Fourier
components, drastically reducing the amount of data required to represent the signal. In contrast,
Fourier transforms are less adept at finding isolated signals, and wavelets can be used to better
effect in this situation.

1.1. The Need for Significance Tests

All this requires some caution. As a noteworthy example, consider a time signal of pure noise,
normally distributed. The Fourier transform of such a signal is plotted in Figure 1. We impose a
filter around the frequencies £20 (6t~ ') of a Gaussian shape which is indicated by the thick gray
line. The resulting inverse Fourier transform shows a “signal” with a frequency corresponding to
the filter. This illustrates that reckless filtering can create the impression of a signal in the data.
White light interferometry relies upon this principal, but in this case, we have extracted a signal
that is meaningless. Note, however, the amplitude of the signal, which is significantly smaller than
original signal. This is because we have filtered out most of the power in the original signal, which

occurred at other frequencies.
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Fig. 1. The left panel is the Fourier transform of a random signal characterized by a variance
0% = 1 with a Gaussian filter overplotted. The right panel is the inverse transform of the filtered
data. The result shows a “signal” arising from noisy data.

The purpose of this example is to illustrate the need for a tool to measure the significance
of filtering products. You might imagine that it’s possible to determine when signal in a Fourier
transform is significant in a signal with normally distributed noise. You’d be right. For now, just
note that whatever tools we develop, we’ll need a way to determine the significance of the transform
products.

1.2. Why develop wavelets?

The Fourier transform is really useful for finding periodic signals in data. This is because the
Fourier transform is rooted in periodic functions: sines and cosines. The transform integral looks

like this: ~
x / f(t) cos(wt)dt
— 00

Speaking in a sloppy fashion, the value of F'(w) is large when the function f(¢) is similar to cos(wt)
and small when it is not. This sort of reasoning shows up repeatedly throughout what follows.
Thus, a signal that has an angular frequency w will have large values because the function cos(wt)
is well matched to its shape. For non-periodic functions, we might suspect the Fourier transform
might not be quite as successful. So, let’s consider the function g(¢) = sin(#?). Figure 2 shows the
graph of this function and the power of the corresponding Fourier transform.
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Fig. 2. The left panel plots the function g(#) = sin(#?) and the right panel shows the power of

the Fourier transform, |g(w)|?.

1.3. The Windowed Fourier Transform

By looking at the signal and its transform, you immediately see that there is power at a lot
of different frequencies. This happens many times in signal processing, but what makes this signal
unique is that the frequencies appear at specific parts of the signal: low frequencies appear in
the first part and higher frequencies appear in the later parts. However, the Fourier transform
has no way of representing this feature; there is no way to tell, from the transform data alone,
where in the signal a particular frequency is important. One solution is to develop the “windowed”
Fourier transform, that is to only look at small sub-regions of the data and examine the frequencies
present in that window. Let’s consider, a Gaussian weight function on the signal. Gaussian window
functions eliminate some pathologies associated with sharp edges of the windowing functions. Let’s

consider three windows on our data:

o)~ o (-22)

wn(t) = exp (itf))
wylt) = exp (_2(t;74ﬂ)2>

These are shown in Figure 3 as the black, thick grey and thick black envelopes respectively (dot-
ted lines) and the resulting signals are shown as the solid lines of the same colors. The Fourier
transforms of the windowed signals are shown in the bottom panel in comparison with the original
signal. Note that the three windows select individual regions of the frequency space, illustrating

the property that we want: time localization of the frequency analysis.

So, why talk about wavelets. It might surprise you, but we’ve been discussing wavelets for
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Fig. 3. The three windowed subsections (wy, w9 and w3 as described in the text) are plotted as
dashed curves of light black, grey, and heavy black curves respectively. The resulting windowed
signals are plotted as solid lines of the light black, gray and heavy black respectively. The bottom
panel shows the Fourier transform of the original signal in thin black and the windowed regions in
dashed curves of solid black, gray and heavy black lines. This shows that the windowed Fourier
transform can be used to localize the signal analysis in time.

several paragraphs now. The windowed Fourier transform can be recast in terms of wavelets, with
a few slight modifications. Let’s examine what happened mathematically. Instead of the original



Fourier equation, we’ve modified the Fourier transform to look like

o0

F'(w) / w(t)g(t) cos(wt)dt
— 0o

where w(t) is a weight function. The form of the weight function is w(t) = exp(—72/2) with

T = (t — b)/a where b is the offset of the Gaussian and a is the width of the Gaussian. If we set

g(t) = 1, we can deduce what the effect of w(t) has on the basis functions cos(wt). Because of

our experience with Fourier transforms and the convolution theorem in particular, we can proceed

without any explicit calculation':
Flw)=W(W)®8w — w)+W(W)®sw +w)=Ww) + W(-w)

Here, /W(w) is the Fourier transform of the Gaussian weight function, also a Gaussian and the
delta functions arise from the transform of the cosines. So, what has happened? By restricting
the region of analysis in the time domain, we have broadened our frequency basis function, which
was originally a delta-function, by convolving it with a Gaussian. This is one of the key properties
of wavelets: they restrict their attention to areas that are finite in both the frequency and time
domains. In contrast, the Fourier transform implicitly relies upon an infinite extent in the time
domain and an infinitely small region of the frequency domain. So, in that sense, the windowed
Fourier transform is a kind of wavelet analysis. We’ll need to make this more rigorous and add in

some other restrictions.

Let’s consider the example of the function g(#) = sin(¢#?) some more. Furthermore, let’s
consider the family of Gaussian weight functions w(t,a,b) = exp(—72/2) with 7 = (t — b)/a once
again. Instead performing analysis for all angular frequencies w, let’s consider a fixed frequency wq
and ask the question ‘Where does the signal have frequency wg?’ This is a question that wavelet

analysis is well suited for answering.

To approach this problem, we’ll just calculate the Fourier cosine transform at a single frequency
wo = 20 rad s ! for a variety of a and b in the weight function. The results of this analysis are
shown in Figure 4. The figure shows that there is a unique width (a4, and time offset by,q, for
which the response is maximized and we can say, vaguely, that in a width a,,4,; around time b4,
the signal looks most like a cosine wave with frequency 20 radians per second.

2. The Wavelet Transform

Throughout the past section we have used a measure of how similar two functions are to each
other:

(f(t),9(t)) = /OO f(t)g* (t)dt (1)

!The symbol ® is used for convolution and # is used for complex conjugation
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Fig. 4. Fourier cosine transform for g(t) = sin(#?) at wy = 20 for a variety of a and b values in
the window function. The maximum value of the transform is marked with a cross. The contours
descend in increments of 20% of the maximum from the maximum. Negative contours are dotted.
The cross represents range where the signal looks most like a cosine wave with wy = 20.

The complex conjugate (x) is thrown in for compatibility with complex functions. Again, if the
functions are similar, the absolute value of (f(t),g(¢)) will be large. If they are different, the
value will be small. Remember, the value is just a real (or maybe complex) number. Examine
the notation: the angle brackets are reminiscent of the notation for an inner (or dot) product in
vector geometry or bra-ket notation in quantum mechanics for a reason. The language of functional
analysis that is used here draws explicit parallels between vectors in a vector space and and functions
in a “function space.” This integral is a way of expressing the dot product between two functions.
Also note in a vector space that the length of a vector is measured by taking the square root of the



vector dotted with itself: ||f(¢)||> = (f(t), f(t)). The same is true here:

o= [ sorod= [ ok

This is called the “L? norm of function space.” All functions with a finite value of ||f|| are called
L? functions, and are also known to the rest of the world as “square-integrable.” This is important
because it means the functions are friendly and well behaved. In Quantum Mechanics the bra-ket
notation was used to project a blended wave function onto “basis” states e.g. the states of the
H I atom. The bra-ket product (f|i) was used to calculate the amplitude of one basis vector in
a mixed state, so this notation is ezactly the context in which bra-ket notation was developed in

quantum.

Returning to wavelets, we’ll define the wavelet transform of a function f with respect to a
wavelet 1 as (f, ). In particular, the wavelet is required to be a function of 7 = (¢ — b) /a:

v = (27)

The wavelet 1(7) is referred to as the mother wavelet. In general the wavelet is scaled to

=7 () 2

so that the L? norm is the same for all wavelets derived from a given mother wavelet. Such a group

is called a wavelet family. So, the full result of the wavelet transform is the inner product between
the function f and the wavelets, with a full range of a and b. We’ll define this result as W (a, b)
making this the standard notation for a wavelet transform:

Wat) = (0. (e 0) = [ 10 ( ”)dt (3)

a

The result of the transform, W (a,b) is, as the notation implies, a function of a and b and the

amplitude represents how well matched the wavelet is to the input function as a function of a and
b. We define the wavelet power as P(a,b) = |W (a,b)|?.

At this point, the discussion implies that any L? function can be a wavelet (like a Gaussian),
but we want to impose a further restriction. We’ll require that

[ ()

This is, purportedly, why wavelets are so named: they wave above and below the axis so that their

total integral is zero. That could just be an old mathematicians tale. This is often expressed in
terms of the “admissibility criterion” for wavelets which requires the integral

0o |7 2
- [* e,



to be finite. Here, J(w) is the Fourier transform of the wavelet (7). As an aside, the admissibility
criterion is a little less stringent than the requirement that the wavelet have zero integral but if the
wavelet integrates to zero, then 121\ (0) = 0 since there is no total power, and the wavelet will fulfill
the admissibility criterion. The reason for this requirement is that it allows the reconstruction of a
signal from the results of a wavelet transform. The inverse transform of the wavelet function is

da db
—5 (4)
a

1) = Ciw/o; | wia b

This looks complicated, but rest assured, you will not have to calculate these explicitly.

Without further ado, let’s look at some wavelets! Perhaps the closest wavelet to what we’ve
been examining is the Morlet Wavelet after the mathematician that popularized it: Susan Wavelet.
The wavelet is defined as

(1) = 7 expliwor) exp(—72/2) (5)

This is rather familiar! It’s just the Gaussian envelope on a cosine and sine function. wq is a
dimensionless frequency. The only difference between this function and the one we considered at
the end of the previous section is that the sines and cosines are fixed with respect to the wavelet

and not with respect to the signal.

The Morlet wavelet is complex-valued. In contrast, a family of wavelets that’s often used which
is strictly real is the derivative of a Gaussian class of wavelets. They are defined as

~1 d 72
e 3)

We'll focus on the case where m = 2 so that this equation becomes

4 2
E(l — %) exp (—%)

This is often called the Mexican Hat Wavelet. Figure 5 plots a Morlet wavelet and two derivative
of Gaussian wavelets (DOG).

3. Using Wavelets to Detect Signals

You may have noticed that the wavelet transformation moves a perfectly good 1-D time series
into a 2-D array of power as a function of scale (a) and offset (b). This seems like a large expansion
of an otherwise compact dataset and you may have serious doubts about how we’ll possibly make it
to data compression. We'll get around to this. Here, we’ll use illustrate how wavelets can be used
to detect signals. One common type of problem in astronomical data analysis is finding a Gaussian
signal in a noisy set of data. Consider the signal in the left-hand panel of Figure 6. Two Gaussians
have been injected into the signal. One has signal-to-noise in one second of 0.8 and a width of 10



Fig. 5. The left panel plots a Morlet wavelet with wg = 6 and the right panel plots two derivative
of Gaussian wavelets (DOG) with m = 2 and m = 6.
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Fig. 6.— The left panel plots a test signal with low signal to noise. The signal without noise is
plotted with a thick gray line. The right panel plots a grayscale image of the power in the wavelet
coefficients using a DOG wavelet with a degree of m = 2. The dashed black contours are the 99%
confidence limit on the noise producing the wavelet coefficients of amplitude shown. The horizontal

dotted lines indicate the locations at which the signal is located.
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s. This pulse is centered at 387 s. The other Gaussian has a signal-to-noise of 0.4 in 1 second and
a width of 50 s and is centered at 721 s.

Since the signal is a Gaussian, using a DOG wavelet is a good idea. This sort of reasoning is
quite common with wavelets: the wavelets are chosen based on how well matched they are to the
expected signals. (Some people deride this choice as arbitrary, but the snipey wavelet reply is just
to say that the choice of a Fourier basis or a Legendre basis is equally arbitrary.) We use a wavelet
with m = 2 and perform a transform for a range of a € [0,200] and b € [0,1024]. This produces
wavelet coefficients as a function of ¢ and b. The wavelet power is just the absolute value of the
coefficients squared (use the modulus squared for complex coefficients). A grayscale image of the
wavelet power is shown in the left-hand panel of Figure 6. The image shows significant power at
the offsets (b) corresponding to the two signal pulses and the scales (a) at which the power peaks
shows that the peak at 387 s is narrower than the one at 721 s. Black contours indicate the 99%
confidence interval in the significance of our signal detection.

How are we determining whether the power in the wavelet coefficients is “significant?” We
accomplish this by determining the response of the wavelet transform to a random signal, n(t).
Then, since the wavelet transform is a linear transform? | we can break up an input signal f(¢) into
signal components s(¢) and noise components n(t):f(t) = s(t) + n(t). If the wavelet transform of
the composite signal shows a response larger than we’d expect for a random signal, we’ll suspect
true signal at the scale and offset where the excess occurs. Before we get to actually evaluating
the response of the Wavelet transform to noise, we need to make a few statements about how the

transform is actually calculated.

3.1. Implementing the Continuous Wavelet Transform

As written, the wavelet transform involves a lot of calculation and you might suspect that a
lot of it is redundant. You'd be right. Again. To speed things up, the first thing to look at in the
wavelet transform is to view the transform as a convolution with b as the lag parameter. And when
we hear convolution we think Fourier Transforms! If we regard a as fixed, then we can write down

the inner product of the functions in terms of b:

W (a,b) = /Z f(t)\%q/}* (?) dt

So, if we take the Fourier transform of this equation, we get

—

W (wa, wp) = Vaf(w)d* (aw)

’In the sense that the transform of a sum is the sum of the transforms, and the transform of the product of a
scalar and a function equals the scalar times the transformed function.
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which is just the convolution theorem of Fourier transform wrapped up with the scaling theorem
which says

t ~
) (—) — ap(aw)
a
The notation <= indicates the two functions are a Fourier transform pair. Note that the evaluation
of the wavelet transform is particularly easy if you know the explicit form of the wavelet’s Fourier
transform. Then, for each scale, the wavelet coefficients can be calculated by simply evaluating
the transformed wavelet in the frequency domain, multiplying by the transformed data to do the

convolution, and inverse transforming. The Fourier transforms of the two wavelets we’ve mentioned

above are:

—qm

(aw — wy
I'(m+1/2)

"] o

2
Morlet: 7'/*H (w) exp[ (a;u) ]

e

Here, H(w) is the Heaviside step function which has H(w) = 0 for w < 0 and 1 otherwise.

Hence, a quick algorithm for implementing the continuous wavelet transform in the case where

the Fourier transform can be explicitly evaluated is

1. Fourier transform the data.

2. For each scale a, multiply the scaled transform of the mother wavelet times the transformed
data. See §3.3 for a discussion of what scales need to be sampled.

3. Transform each scale back.

3.2. The Noise Response of the Wavelet Transform

To determine the response of a wavelet transform to signal, we consider the power in the
wavelet transform, P = |W (a,b)|?, for a random input signal n(t).

However, as pointed out in the previous section (which is why it is where it is), the wavelet
transform can be thought of as a convolution between a wavelet of scale a and a function as a

function of lag parameter b. Then,
E(P) =& (In(t) ® ¢*(a,b,1)|%)

However, the expectation value of this function can be Fourier transformed to split up the convo-
lution:

o0

E(In(t) ®*(a,b,1)|*) = & (/

— 0o

n(w)Qlw(a,b,w)Ide) = /OO E(A(w))]3(a,b,w)*dw  (6)

J =00
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The first equality holds by transforming into the Fourier domain and following the proof of the
Power theorem (Parseval’s Theorem).

n(t) ® Y*(a,b,1)]> = [n(t) ®¢*(a,b,1)] [n(t) ® " (a,b,t)]"
- / 7 ()P (w) exp(—iwt)dw / 7 ()P () expliet)du

— /00 /00 ﬁ(w’)*ﬁ(w)qz(w’){p\(w)* exp [Z(w B w')t] o du’

= [P

Returning to the last equality in Equation 6, the expectation value has been passed into the integral
which can be done for random signals. The expectation value of a known wavelet function is equal
to the function (just like the expectation value of 3 in many realizations of 3 is 3). The expectation
value for a random signal is determined by characterized by its variance 02 so Equation 6 becomes
[e.e] [e.e]
ﬂm=/ amwm@wwﬂm=/ o*ip(a,b.w)dw = o (7)
— 00 — 00
So, we have shown that the expectation value of wavelet power is equal to the variance of a random
signal. The wavelet transform preserves the variance of the noise in the resulting coefficients. We
would like to know not just the expectation values but the distribution of the wavelet coefficients
and the wavelet power. This is not easy to demonstrate, however, in a statement without proof, the
wavelet coefficients for a pure noise signal are distributed according to a normal distribution with
variance o2 for all a and b. This means that the wavelet power is distributed as a x? distribution
with 1 Degree of Freedom if the wavelet is real and 2 DOF if the wavelet is complex. This is because
a random set of complex numbers has a normal distribution of variance o2 in the real plane and

the same in the complex plane. In other words, the PDF, ¢ of the wavelet power P is:
o) =x* ()
o

where k = 1 for real wavelets and & = 2 for complex wavelets and o2 is the expectation value of
the noise variance. Thus, using the x? cumulative distribution, we can choose a probability cutoff
and require the wavelet power associated with a signal to be greater than this level to be “real.” In
Figure 6, we looked for what level of wavelet power would be generated by random noise only 1%
of the time. Using the CHISQR_CVF function in IDL with arguments of 0.01 for the 1% confidence
interval and 1 for the degrees of freedom (the DOG is a real wavelet). Then, we put in a contour
at this 99% confidence interval showing there is significant power around where the Gaussian input

signals are located, as in Figure 6.

3.3. Redundant Information

As we’ve noted before, the continuous wavelet transform contains a lot of redundant informa-

tion. In the next section, we will begin discussion the discrete wavelet transform. Like the Fourier
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transform, we want to know how many sample values are needed to accurately reproduce a signal.
In particular, we are concerned with how many scales (a) and offsets (b) are needed to obtain a
complete picture of the wavelet transform.

The first thing we could do to minimize redundancy is to eliminate a large amount of the scale
information. To capture all the information using wavelet transforms, a signal must be sampled at
scales spaced logarithmically with a maximum spacing set by the wavelet being used. In general,
if the scales are spaced by scales that increase by a factor of v/2, all scales will be well sampled for
all wavelets. Thus, the scales that should be sampled are a; = ag - 27/2_ all the information should
be retained. Here, g is some minimum scale of the data under examination.

The reason for this logarithmic stepping in scale is that for a; ~ a,,, the wavelet filters are
smoothing on very similar scales and the difference is quite small. This redundancy can be quantified

with the inner product between the two wavelet functions
oo
(11[)((”’ bk = 0)71;[)(0‘7717 bk = 0)) = / 7,0((11’ bk = O,t)d)*((lm’ ka = 0’ t)dt
—00

For a; = a,, this integral equals 1 (because of wavelet normalization) and falls off from 1 as a,,
changes. This behavior is shown in Figure 7. The integral is often called the overlap integral
and represents how similar the wavelet functions are, which in turn indicates how redundant the
information is for the transforms with the two different filters. Since the overlap drops off as a
function of the logarithm of the scale parameter, logarithmic sampling of scales is adequate for

reconstruction.

In a similar fashion, for a fixed scale a( the spacings of b are redundant for very small steps of
b compared to how fast the wavelet oscillates. This is because the wavelet smoothes the data on
these scales and the sampling is redundant. To parameterize how “fast the wavelet oscillates,” we
calculate the Fourier equivalent frequency of the wavelet, which is defined as the maximum value
of the Fourier power of the wavelet: w., = max \J(w)\Q This is a sensible definition because it
characterizes a wavelet by the dominant frequency of its oscillatory components. This defines the
Fourier wavelength of the wavelet by Ay = 27 /we,. For the Morlet and DOG wavelets, the Fourier

wavelengths are

4ra 21a
AMor = —————F——— and Apog =

wo + /2 + w} m+1/2
On scales significantly smaller the Ay, the data are redundant since the wavelet smoothes over these
scales. A wavelet should be sampled with 6b = A¢/2, which is the analogue of the Nyquist criterion.
The spacings of these points indicate that many values of b must be sampled for small values of a,
but for large values of a, only a few values of b are needed for all information.
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Fig. 7. The overlap integral, (¢(a;,b = 0),%(am,b = 0)), for a DOG wavelet with m = 2. The
scale a; is fixed at the value indicated by the solid vertical line. The dashed vertical lines indicate
am = a;/2 and a,, = 2a; where the overlap has fallen off significantly.

4. The Discrete Wavelet Transform

As noted previously, continuous wavelets take a 1-D signal and make it into a 2-D representation
in wavelet space. This clearly introduces a lot of redundant information. In addition, most signals
that we are exploring are discretely sampled, as is the case with real time series. At this point,
we will change methodologies to explore the Discrete Wavelet Transform. Unlike most functional
analysis where the discrete analysis is just an approximation, Discrete Wavelet transforms actually
have more utility than the Continuous variety. To begin with, everything will look like the natural
generalization of the continuous, mathematically grounded transforms that we’ve been discussing.

As we progress, we’ll move father away from this treatment.

Begin with a vector of data x;. We’ll assume that the data are well gridded, that is to say
spaced by a uniform time interval 6¢. We'll start by considering continuous wavelets with closed
form expressions, i.e. the wavelets we’ve been using. In this case, the wavelet coefficients are
sampled on a grid of a and b values, with b being spaced every dt. Then

n—bk)5t>_

W(aj,bkat):Nlen ! ¢*<( (8)
n=0 \/@ aj

Since our class is focusing on IDL, we’ll adopt the Fourier transform conventions of IDL to
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make this easy to implement. Other languages would use their own conventions.

Then, the Discrete Fourier Transform can be used with the convolution theorem for a fast calculation
of the coefficients.

N—-1
W(aj,bp) =Y Tpy/ajp* (ajwp) exp (iwpbyot) (9)
p=0

Here, w), is the vector corresponding to the frequencies sampled in the Discrete Fourier trans-
form of z, namely w, = 27p/Ndt for p < N/2 and w, = 27(p — N)/Ndt for p > N/2.

The normalization to keep the wavelet at constant power for all values of the scale a; is

" ((n - ék)5t> _ 5_f¢0 ((” - ék)5t>
(]‘] (l] (l]

where 1) is the mother wavelet.

4.1. Reconstruction Using Discrete Wavelets

Like the Fourier transform, the wavelet coefficients W (a;,b;) can be used to reconstruct a
signal from the constituent parts. However, since the wavelet transform is convolving the signal at
some fixed minimum scale ag, detail on levels smaller than ay will be lost. Even when sampled with
minimum redundancy, the wavelet transform still contains more information than the original signal.
As such, the inverse wavelet transform can actually rely upon a different function to reconstruct
the data. The basic process involves reconstructing using the inverse transform (Equation 4) with
a simpler function and a function that corrects for the difference between the original wavelet and
the reconstruction function. This is a blatant statement without proof since the details are irksome
(but available in Farge’s 1992 article in the Annual Review of Fluid Mechanics). The utility of
delving into this is that a much simpler function can be used to reconstruct the original signal, like
the delta function. In the special case that the scales are chosen logarithmically, with a factor of
207 between each level, the data can be reconstructed with:

_0j(01)1 LK Re {W (ay, br)}
Coto0) = V&

Tk

where Cj is a scaling constant that depends on the wavelet and 1(0) is the amplitude of the mother
wavelet at by = 0. The Re operator indicates that the real part of the expression should be used.
Note that in this reconstruction formula, the signal at any point is just a sum over the different

scales that give rise to it.
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Given the possibility of reconstruction, a wavelet decomposition seems to present the opportu-
nity to filter the data. In short, a filter would consist of setting the power at a given scale to zero,
thereby eliminating that scale from the reconstruction. In Fourier filtering, this is accomplished by
setting unwanted frequency components to zero. One problem immediately crops up: unlike the
Fourier basis functions, the wavelets that we have been using are non-orthogonal which prevents
reconstruction. This means that the wavelets coefficients on different scales contain redundant
information that, when summed into a reconstruction, interferes in precisely the correct fashion to
return the original signal. If a scale is blindly set to zero, wavelets at different scales may contribute
erroneous power in the reconstruction. The solution to this problem is to construct wavelets that
are orthogonal, so that a single wavelet coefficient represents the total power of a given structure at
a fixed scale. This proves to be difficult with the wavelets we are dealing with. There are no closed
form expressions for continuous wavelets that are orthogonal for all ¢ and b. Through judicious
selection of a set of a grid of a; and by, orthogonal wavelets can be constructed. This is reminiscent
of a discrete wavelet transform; and indeed, we must operate in the discrete wavelet transform in

order to make any progress.

5. Orthogonal Wavelets

In the continuous case, the statement of orthogonality of wavelets is just

((ai, bi, ), ¥ (aj, bj, x)) = d(ai — a;, b — by)

In the discrete case, the inner product between two functions is

N-—1
(Flae) g(en)) = S Far)g” ().
k=0

This is just the analog of Equation 1 realized in the discrete case. Everything we said about the be-
havior of the inner product there should hold in the discrete case. A similar definition of orthogonal-
ity to the continuous case follows for the discrete case with (y(a;, bi, Tx), ¥(a;j, bj, k) = da;.0;0; b, -
To illustrate the utility of orthogonal wavelets with respect to filtering, we can draw a parallel
with vector spaces. In an orthogonal basis of a vector space, the dot product between two different
basis vectors is zero. A vector is constructed as the sum of the projections onto the basis vectors
times the basis vectors. For discrete functions with an orthogonal basis, the projection onto the
ith basis function is just (f,(a;, b;)) and the function is reconstructed much more simply than the
non-orthogonal case: f = sz(f, (ai,b;))1(a;i, bj). (Once again, this sum may look quite familiar
if we re-write the inner product in the notation of quantum mechanics: [f) = >, [¥i;){(vis]f).)
There is because there is no interference between terms in this sum because the overlap integrals
(sums) between the orthogonal functions are zero (this is the definition of orthogonal). Filtering
is accomplished by dropping “unwanted” terms from the sum and reconstructing. Since the basis
functions are orthogonal, there is no excess information added in. This is highly analogous to

Fourier filtering.
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It remains to construct an orthogonal wavelet. So far, we’ve made no assumptions of continuity
or differentiability, though all our wavelets have been smooth so far. The simplest orthogonal
wavelets are not continuous. We shall begin our discussion with the Haar wavelet which is a
discontinuous, orthogonal wavelet. The mother wavelet is defined on the interval between 0 and 1

as
1, 0<7<1/2
%(7)_{ 1, 1/2<7<1.

The wavelet is well normalized in that [ o(7)dT = 0 and [ |tho(7)|?dT = 1. The left-
hand panel of Figure 8 plots the wavelet. The right-hand panel shows how the Haar wavelet is
“interpolated” onto a fixed grid of points for the Discrete Wavelet Transform. The sampling of the
function at the xs is quite easy in this case!
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Fig. 8.— The Haar wavelet. The left-hand panel plots the wavelet as it is defined and the right-hand
panel shows the ease of sampling the wavelet at discrete points, marked by Xxs.

This wavelet is orthogonal to other Haar wavelets provided that for 7 = (t — b)/a, a = 27% for
some integer value of k and b/a = ¢ is also an integer. The negative sign on k is just for the sake
of notation later. For the mother wavelet case (i.e. @ = 1) b must be an integer, so other Haar
wavelets at this scale are just the mother wavelet translated by integer values so that the wavelets
don’t overlap. In this case, the product of one wavelet by another is identically zero for all values
of £, showing these are orthogonal. For different scales, let’s examine the inner product of 1y with
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the wavelet that has £k = 1 and ¢ = 1 which has the form

B 1, 1/2<t<3/4
w“(t)_ﬁ{ ~1, 3/4<t<1.

We have used the notation 1) . to denote this wavelet where £ and c are integers determining the
scale and offset respectively. The inner product of this with the mother wavelet (1) is just the
—1 (from )9 o) times the integral of ¢; ; over the range [1/2,1) which is zero by inspection. For all
values of k and ¢ that are integers, the wavelets will be orthogonal. This example may be aided by
studying some examples of the Haar wavelet for different values of k and ¢ which appears in Figure

9.

i i ) - ) R
0 | | o 0 o
L|J0’0 | | i | l'IJl,O l.|J1,1 i |
. ) . ) A
o i 0 o 0 o
W0 W Voo 1

Fig. 9.— Examples of the Haar wavelet for different values of k£ and c. For larger k, the wavelet is
narrower and taller. For larger values of ¢, the wavelet moves from 0 to 1. The wavelet )5 3 is not
shown but is necessary to complete the set of 1o ..

Decomposition onto this basis is accomplished using the methods outlined above. That is to
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say, we just take the inner product of the function with each of the wavelets in our infinite basis.
Restricting to the interval [0, 1), any function with zero mean can be represented on this interval as

oo 2k_1

f(t) = Z Z 71)k,c<f(t)a¢k,c(t)>

k=0 c=0

1
= 11)(]’0/0 f(t)d)()’[]dt

1 1
+ 11)1,0/ f(t)¢1,0dt+101,1/ f(t)prdt
0 0
1

1 1 1
+ 11)2,0/0 f(t)¢2,0dt+w2,1/0 f(t)@/)2,1dt+w2,2/U ,f(t)¢2,2dt+w2,3/0 f(t)apo3dt

oo 2k_1

1
+ 3w / £ () el

k=3 c=0

Since all the basis function have zero mean, there is no way that their linear combination can
have a non-zero mean. To represent any given function, we need to add in an offset equal to the
integral of the function across the interval under consideration, which can be thought of as the
inner product of the function with a scaling function ¢ which is equal to 1 over the unit interval:
(f(t),o(t)) = (f(t),1). For other wavelets, the scaling function is different. The reason for this
is that the wavelet and its scaling function form a pair such that one can be derived from the
other. Thus a particular wavelet will have a scaling function determined by that wavelet. We won’t
articulate the precise relationship here, but we will point out where the scaling function occurs in

the most useful cases.

So, now we know how to represent an arbitrary function as the sum of Haar wavelets. Let’s
apply this method to sample data. Using some clever matrix manipulations, we’ll be able to vastly
speed up the calculation of wavelet coefficients without having to resort to Fourier transforms.
This results in the Fast Wavelet Transform which (when done right) is even FASTER than the
Fast Fourier Transform. Like the FFT, let’s assume we have 2V data that we're transforming.
Let’s associate these data with the unit interval [0,1) so that each datum represents a step of 2=

(N=1) wavelets at each scale.

along this interval. We will need to consider a total of N scales with 2
This means there will be a total of 2V wavelet coefficients. Immediately, this suggests that the
redundancy we had seen in the previous cases is gone. Let’s store the wavelet coefficients in a vector

with the first element being the scaling coefficient sg = (f(¢), ¢). Then, the wavelet transform can
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be represented as a matrix multiplication

[ S0 1 P qS — o
wo,0 “— ’(/)0’[] — T
w10 — o — T2
wi | = | — Y1 — T3 (10)
w20 — oo — T4
w1 — Yoy — 5
=w

This equation is the analog of Equation 8 using a matrix multiplication to represent the transform.
The matrix ¥ is the interpolation of the wavelet functions onto a discretely sampled grid. Because
the Haar functions are so simple, the interpolation is relatively easy. In the case of N = 3, the

transform matrix looks like

111 1 11 1 1]
1 1 1 1 -1 -1 -1 -1
V2 V2 V2 v2 0 0 0 0
o |0 0 0 0 vaviovz v
2 -2 0 0 0 0 0 0
0 0 2 -2 0 0 0 0
0 0 0 0 2 -2 0 0
. 0 0 0 0 0 0 2 -2 |
The values of each row are increasing {1,/2,2, - - - ,ZN/Q} because of the normalization condi-

tions. Since there are 8 points (N = 3), each point represents 1/8 of the interval between 0 and
1. Thus for a matrix with element a; ; in row i and column j, each row must have (), a?’j)/S =1

and every row but the first has ). a; ; = 0.

Surprisingly, this matrix is actually an orthogonal matrix so that its transpose is its inverse.
Thus, the inverse wavelet transform can be accomplished by multiplying the vector of wavelet
coefficients w by the inverse matrix:

x=9lw
Maybe this isn’t so surprising since each row of the matrix is an orthogonal vector to all the other

rows because of the way it was constructed.

5.1. Implementation of the Haar Wavelet Transform

What makes orthogonal wavelet transforms quick to implement is the recognition that the

transform matrix ¥ can be broken down into a series of matrix multiplications that are themselves



21

very quick to implement computationally. There are two steps for each scale considered and thus,
in this simple implementation, there are 2N matrix multiplications. The method works from the
smallest scales to the largest scales. At each scale you multiply the data vector by a conwvolution
matriz and a permutation matriz.

For the Haar wavelet, the convolution matrix looks like this:

Sl =
N
—_
[

When this matrix operates on a data vector, the first row of each block smoothes the two elements
together, so this is called a smoothing row and the resulting scalar is called a smooth component.
The second row records the difference between each pair of elements, and is called called the detail
row and the resulting scalars are called the detail components. The resulting vector contains the
smooth and detail components interleaved. The permutation matrix operates to move all the
smooth components into the first part of the array and the detail components in the latter half of
the array. While this is best accomplished numerically by manipulation of the vector indices, for
the sake of completeness, the permutation matrix has the form

1 00

0 01

0 00 1
POZ

010

0 00 0

If our array is 0 indexed (e.g. as in IDL), this puts the Oth, 2nd, 4th ... elements in the Oth, 1st,

. elements of the new array and 1st, 3rd, 5th, etc. elements into the (2V/2)th, (2V/2 4 1)th,
elements of the new array. The process is then repeated with convolution matrix C; and
permutation P; which operate only on the first half (smooth components) of the resulting vector.
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Thus, C; has the following structure.

I
Sl

G

0 Ty |

and the permutation matrix similarly splits into blocks of size 2/V/2. Iyn/2 is the identity matrix
with size N/2 x N/2.

This process is iterated N times so that

w =Py 1Cy 1Py 2Cy 2 C1PoCox

v

As indicated by the brace, the product of all the matrices gives the wavelet matrix. This suggests
how to build the matrix in the discrete wavelet transform from simple matrices. However, the
results of such an operation may be far from intuitive. It helps to view the process step by step.
At each level, operation by the matrix C produces smooth components of the data alternating
with detail components of the data. The matrix P separates them and the process is repeated on
the smooth component. In what follows, the smoothed components are given by s’s with the data
after the first smoothing being s; and the data after the second smoothing being S;, and the detail
components given values with d’s  d; after the first detail convolution and D; after the second
detail convolution. Then, the whole process can be viewed schematically as:

n S1 S1 S1 S1
Y2 dy 89 D, S9
Y3 89 3 So D,
y4 | Convolve | d2 | Permute | s4 | Convolve | D2 | Permute | Do
— — — — (11)
Ys 53 dq dq dq
Y6 d3 ds ds do
Y7 84 d3 ds ds
Ys dy dy dy dy

This gives a sense of what data end up where after this kind of Discrete Wavelet Transform.

Unfortunately, we’ve replaced a matrix multiply of a 2 x 2V matrix by a vector of length
2N with 2N such matrix multiplies. Given that the original state wasn’t so hot, the later state
seems to have only exacerbated the problem. Fortunately, this is actually the path of success.
The general class of operations described in the P and C matrices are very fast to implement on
computers. However, it is rather tricky. This process is laid out in Numerical Recipes; and if you

study it carefully (§13.10), you will note that the partial wavelet transform (one convolution and
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one permutation) is actually implemented by doing bit shifting operations on the indices of the
array. This can cause headaches. However, when implemented in this supremely clever fashion,
the wavelet coefficients can be calculated in O(n) steps as opposed to the fast Fourier transform
which requires O(n logn) steps. The reason why this is important is not because you need to really
understand what’s going on with the guts of the fast wavelet transform, but rather if you try to

read Numerical Recipes you'll understand why things look so spooky.

5.2. Filtering with the DWT

Filtering is straight forward from this point. As mentioned previously, with an orthogonal
basis, you can filter by setting the wavelet coefficients of unimportant scales to zero or significantly
reducing them. An example of this filtering is shown in Figure 10. We return to our noisy data
set with two Gaussians injected (Figure 6) . The data vector is 2'° elements long so we apply the
partial wavelet transform 10 times, in reducing the vector to wavelet coefficients. These coefficients
are plotted in the left-hand panel of Figure 10. We set all coefficients with wavelet amplitude less
than 30 to 0 and perform the inverse transform. The filtered data set appears in the right-hand
panel of Figure 10. Instead of the Haar wavelet, this wavelet transform uses the Coiflet wavelet
coefficients of degree 3 since they produce wavelets that are smoother and shaped more like a
Gaussian. A Coiflet wavelet of degree 3 appears in Figure 11. See §5.3 for more discussion about
how to actually implement the Coiflet wavelet.
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Fig. 10. The left panel plots wavelet coefficients of a simulated signal using the Coiflet discrete
wavelet transform of degree 3. The lines indicate the clipping levels used in the data. The right-
hand panel plots the original test signal in black, the true signal in red and the reconstructed signal

in blue.
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Fig. 11.— Wavelet Examples. The left-hand panel shows a Coiflet wavelet of degree 3 used in the
filtering of Figure 10. The right-hand panel shows a Daubechies wavelet with 4 coefficients (see

§5.3)

5.3. Other Wavelets Families

The Haar wavelet is the simplest wavelet to be implemented in this fashion. Many other
wavelet families are produced by using different entries in the convolution matrix. These families
are significantly better at analyzing smooth signals but we neglected them for the sake of simplicity.

One of the most commonly seen wavelets is the Daubechies wavelet with 4 coefficients:

Co C1 C9 C3

c3 —Cy C1 —C(C
Cy = Co c1 C9 Cc3
cy3 —Cy C1 —C(

The constants ¢; are given by
o= (1+V3)/4VE, o = (3+V3)/4V2,

This peculiar set of numbers is the solution to the equations

co = (3—+3)/4V2, and 3 = (1 — V3)/4V2

g4 i+ 545 =1 and ey + c3e1 =0

which are required for orthogonality of the matrix, and the numbers also have two moments which

vanish:
c3 —co+c1 —cg=0and Ocg — 1lco + 2¢9 — 3¢y = 0.
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The first equation is the zeroth moment of the wavelet coefficients (which corresponds to the second
row of the matrix, see below). The second equation is the first moment, with each wavelet coefficient
multiplied by its position in the sum. The second moment would just have the position in the sum
squared multiplied by each coefficient and so on. The number of vanishing moments is intrinsically
related to how smooth the resulting wavelet is. This wavelet, since it has 4 coefficients is called the

Daubechies 4 wavelet. You might wonder what this wavelet looks like.

It’s fairly straight forward to produce a wavelet simply by putting 1 in the appropriate position
in the wavelet coefficient matrix and inverse transforming. This will produce the wavelet corre-
sponding to that entry in w. The correct position in the matrix corresponds to the first “detail”
coefficient in the final wavelet array (the D; in Equation 11). In general, if there are n wavelet
coefficients, the 1 should go in the entry of the array that’s the next largest power of 2 greater than
or equal to n. For example for the Daubechies wavelet of order 6, the 8th element should be 1. To
determine the scaling function, the first element of the array should be set to 1 before the inverse

wavelet transform is performed.

The Daubechies 4 wavelet appears in the right-hand panel of Figure 11. A Coiflet wavelet of
degree 3 (Figure 11, left) has 18 wavelet coefficients. If all you are given is a set of these wavelet
coefficients, the matrix Cy can be built up algorithmically. The coefficients are inserted in the first
row of Cy, beginning in the first column. Then, the next row is filled with the coefficients in reverse
order with every other coefficient multiplied by —1. The next row is the same as the first row, except
it is padded in front by two columns of zeros. The rows are often called the smoothing row (for the
original coefficients) and the detail row (for the reversed, modulated coefficients). The zeros are
inserted so that the start of the smoothing row always falls on the diagonal. The smoothing row
represents the scaling function, ¢, sampled with the smallest possible number of points to retain
all the properties of the wavelet and the detail row represents the wavelet,i), sampled with the
smallest number of points. This simple algorithm illustrates an informal relationship between the
two functions, but the actual relationship is buried deeper in mathematics.

6. Higher Dimensions

To this point, we’ve dealt exclusively with wavelets in 1 dimension which is fine for some simple
analysis, but astronomy relies upon multidimensional data. There are two ways to generalize our
results. Returning to the continuous form of the transform for a moment, it’s possible to write

down the inner product metric in higher dimensions:

(f.9) = /V f(R)g(r)dV

With this definition, everything follows mutatis mutandi (changing what needs to be changed) to
reproduce all the results in the Continuous wavelet transform section. It’s also possible to make a
wavelet that’s not isotropic and this introduces angular dependence so that the wavelet coefficients
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include a function of angle rather than just scale and offset.

To use the DW'T, the data will be contained in a p dimensional array with each dimension
having a length that is a power of two. The wavelet transform is inherently a one dimensional
operation. The wavelet transform is simply applied to each dimension successively, and the order
does not matter! Thus, to transform the columns of a two-dimensional matrix M, instead of just

a column vector, the wavelet transform is just
W,.=9%M

since matrix multiplication operates independently on each of the columns. The resulting wavelet
coefficients have been subscripted with a ¢ to indicate that the columns have been transformed.
Then, the rows of the matrix must be transformed. To bring the matrix ¥ to bear on the rows,
the resulting matrix W, needs to be transposed since ¥ operates on columns and then transposed
back. So, the final wavelet coefficients W are computed by

W = [\If (\IIM)T}T

If you recall a property of matrix algebra, (ab)” = b”a”, then this last equation becomes more
illuminating:
w = [eM7e7]" = oMe” = oME .

This is a diagonalization of matrix M with respect to the basis vectors in ¥, also known as a
projection onto the basis vectors. With this identification, the parallel between vector geometry
and functional analysis has come full circle! Also note that it does not matter whether you transform

the rows or the columns first, which you can check with the methods used above.

Unfortunately, matrix multiplication doesn’t generalize to higher dimensions, so the matrix
methods in the DWT don’t follow easily. Instead, the general strategy is to view a higher dimen-
sional array as being comprised of a bundle of individual vectors of data and to apply the wavelet
transform to each one individually. Then the matrix is transposed using the generalized idea of
transposition where the vectors along one dimension are permuted into another.

6.1. Using the 2-D Discrete Wavelet Transform

Using the methods described above, let’s do a 2-D wavelet transform. Starting with a simple
image which consists of a 2-D Gaussian (Figure 12), we perform a Coiflet transform of order 3, first
along the rows and then the columns. The resulting image contains the wavelet coefficients that
represent the Gaussian. The power in both domains is the same, much as it is for the 1-D wavelet
transform and we can check this for the image that

2 2
S M=) WY
i i
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Fig. 12.  The left panel shows an input image of a Gaussian in gray scale. Note that the axes of the
image are inverted along the y-axis with respect to how we usually write matrices (but in accordance
with how we write coordinate axes). The middle panel shows the image after wavelet transforming
each column in the image. The right-hand panel shows a subsection of the transformed image after
transforming along the rows. The middle and right-hand panels are shown with a logarithmic color
stretch. Note the information in the image is compacted into a small number of wavelet coefficients.

In this case, filtering follows the same pattern as was done for the 1-D case. First, we generate
a noisy image of the Gaussian by adding randomly distributed noise with variance o2 to every pixel
so the peak signal to noise level in the image is 1. The image is then wavelet transformed with
a Coiflet of order 3 and wavelet coefficients with an absolute value less than 40 are set to zero.
This is because there are 2562 pixels in the image so we expect only a few 4o outliers, but many
3o outliers. The coefficients are then transformed back to filtered image. The process is shown in
Figure 13.

7. Image Compression

Back at the beginning of this document, I mentioned that wavelets could be used for the
compression of images. This is because they are good at encoding rather detailed information in a
few elements. Filtering and compression have a lot to do with each other. In the case of filtering,
you want to move to the wavelet domain to increase the significance of your signal relative to the
noise. In compression, you want to move to the wavelet domain so that you can identify the most
important characteristics in the image: those that have the most power in the wavelet domain.
To compress an image, you just keep some fraction of the “important” components of the image.
There are two methods of compression. In both cases, the wavelet coefficients are ranked according
to power (the square of the coefficient). In the first case, the top n coefficients are retained and the
remainder are set to zero. In the second case, the precision of the coefficients is reduced (i.e. floating
point numbers would be reduced to integers). Both of which achieve a substantial compression of
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Fig. 13. The left panel shows an input image of a Gaussian in gray scale with noise added. The
Gaussian 4s in there! Contours show the shape of the Gaussian with the lowest being 0.1 times
the peak value. The middle panel shows a subsection of the wavelet image indicating where the
Gaussian maps to in the wavelet domain. The right-hand panel shows the image after the filtering is
complete with the same contours to indicate the original shape of the Gaussian. The small features
are from noise with enough power to avoid being filtered.

the data.

Note that this isn’t particular to wavelets. The Fourier transform can be used for compression
as well. Some image compression algorithms use the Discrete Cosine Transform to extract out
filtered information, like the JPEG standard. The JPEG-2000 standard uses wavelets instead. The
degree of compression is determined by the fraction of the wavelets you keep. As an example,
Figure 14 shows an image of a distinguished astrophysicist. The middle panel shows the image
reconstructed from top 1% of the wavelet coefficients ranked by power and the right-hand panel
shows the image reconstructed from 10% of the wavelet coefficients. The quality of reconstruction
is significantly better in the latter case and shows that there really isn’t much information in Figure
14. But you probably knew that anyways...

A. Reference Material

For the sake of completeness, here are the coefficients for the Coiflet wavelet of order 3 that
we’ve been using so much:

-0.0037935129, 0.0077825967, 0.023452696, -0.065771911

-0.061123388, 0.40517692, 0.79377722, 0.42848349, -0.071799822,
-0.082301927, 0.034555029, 0.015880545, -0.0090079761, -0.0025745177
0.0011175187, 0.00046621695, -7.0983303e-05, -3.4599774e-05
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Fig. 14. Demonstration of Image compression using the Coiflet wavelet. The left-hand panel
shows the original image, the middle panel shows a compression of 100x and the right-hand panel
shows a compression of 10x.
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