
WaveletsE. Rosolowsky1. Basi Signal ProessingA large setion of astrophysis is dediated to rigorous analysis of astrophysial signals. Signalproessing represents the full array of tehniques that are used to extrat meaningful results fromtelesope data that are often of highly dubious quality. This setion of the ourse will fous onsignal extration, �ltering and ompression using wavelets. Wavelets are an inreasingly popularset of funtions that are used in a fashion quite similar to the Fourier transform. However, beauseof the di�erenes between the funtions used, wavelets have strengths in areas that the Fouriertransform does not.The Fourier transform is an exellent and well-used signal proessing tehnique. As an example,it is ideal for �nding periodi signals in very noisy data (like pulsar data). E�etively, the signalis moved from the time domain, where the power in the signal is sattered throughout the timesample, to the frequeny domain where all the power in the signal is onentrated at one or a fewfrequenies. This makes it relatively easy to identify the signal. This represents signal extration.To �lter the data, we'd make the assumption that all the frequenies that don't have obvious signalare just the result of noise and set those to zero. With an inverse Fourier transform, the signal,with the zeroed out frequenies an be moved bak into the time domain where the periodi signalwill magially appear and be noise free. Finally, signal ompression: if the signal is representedby only a few frequenies, then we ould adequately represent the signal with just a few Fourieromponents, drastially reduing the amount of data required to represent the signal. In ontrast,Fourier transforms are less adept at �nding isolated signals, and wavelets an be used to bettere�et in this situation. 1.1. The Need for Signi�ane TestsAll this requires some aution. As a noteworthy example, onsider a time signal of pure noise,normally distributed. The Fourier transform of suh a signal is plotted in Figure 1. We impose a�lter around the frequenies �20 (Æt�1) of a Gaussian shape whih is indiated by the thik grayline. The resulting inverse Fourier transform shows a \signal" with a frequeny orresponding tothe �lter. This illustrates that rekless �ltering an reate the impression of a signal in the data.White light interferometry relies upon this prinipal, but in this ase, we have extrated a signalthat is meaningless. Note, however, the amplitude of the signal, whih is signi�antly smaller thanoriginal signal. This is beause we have �ltered out most of the power in the original signal, whihourred at other frequenies.
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Fig. 1.| The left panel is the Fourier transform of a random signal haraterized by a variane�2 = 1 with a Gaussian �lter overplotted. The right panel is the inverse transform of the �ltereddata. The result shows a \signal" arising from noisy data.The purpose of this example is to illustrate the need for a tool to measure the signi�aneof �ltering produts. You might imagine that it's possible to determine when signal in a Fouriertransform is signi�ant in a signal with normally distributed noise. You'd be right. For now, justnote that whatever tools we develop, we'll need a way to determine the signi�ane of the transformproduts. 1.2. Why develop wavelets?The Fourier transform is really useful for �nding periodi signals in data. This is beause theFourier transform is rooted in periodi funtions: sines and osines. The transform integral lookslike this: F (!) / Z 1�1 f(t) os(!t)dtSpeaking in a sloppy fashion, the value of F (!) is large when the funtion f(t) is similar to os(!t)and small when it is not. This sort of reasoning shows up repeatedly throughout what follows.Thus, a signal that has an angular frequeny ! will have large values beause the funtion os(!t)is well mathed to its shape. For non-periodi funtions, we might suspet the Fourier transformmight not be quite as suessful. So, let's onsider the funtion g(t) = sin(t2). Figure 2 shows thegraph of this funtion and the power of the orresponding Fourier transform.
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Fig. 2.| The left panel plots the funtion g(t) = sin(t2) and the right panel shows the power ofthe Fourier transform, jbg(!)j2.1.3. The Windowed Fourier TransformBy looking at the signal and its transform, you immediately see that there is power at a lotof di�erent frequenies. This happens many times in signal proessing, but what makes this signalunique is that the frequenies appear at spei� parts of the signal: low frequenies appear inthe �rst part and higher frequenies appear in the later parts. However, the Fourier transformhas no way of representing this feature; there is no way to tell, from the transform data alone,where in the signal a partiular frequeny is important. One solution is to develop the \windowed"Fourier transform, that is to only look at small sub-regions of the data and examine the frequeniespresent in that window. Let's onsider, a Gaussian weight funtion on the signal. Gaussian windowfuntions eliminate some pathologies assoiated with sharp edges of the windowing funtions. Let'sonsider three windows on our data:w1(t) = exp��2t2�2 �w2(t) = exp��2(t� 2�)2�2 �w3(t) = exp��2(t� 4�)2�2 �These are shown in Figure 3 as the blak, thik grey and thik blak envelopes respetively (dot-ted lines) and the resulting signals are shown as the solid lines of the same olors. The Fouriertransforms of the windowed signals are shown in the bottom panel in omparison with the originalsignal. Note that the three windows selet individual regions of the frequeny spae, illustratingthe property that we want: time loalization of the frequeny analysis.So, why talk about wavelets. It might surprise you, but we've been disussing wavelets for
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Fig. 3.| The three windowed subsetions (w1; w2 and w3 as desribed in the text) are plotted asdashed urves of light blak, grey, and heavy blak urves respetively. The resulting windowedsignals are plotted as solid lines of the light blak, gray and heavy blak respetively. The bottompanel shows the Fourier transform of the original signal in thin blak and the windowed regions indashed urves of solid blak, gray and heavy blak lines. This shows that the windowed Fouriertransform an be used to loalize the signal analysis in time.several paragraphs now. The windowed Fourier transform an be reast in terms of wavelets, witha few slight modi�ations. Let's examine what happened mathematially. Instead of the original



{ 5 {Fourier equation, we've modi�ed the Fourier transform to look likeF 0(!) / Z 1�1w(t)g(t) os(!t)dtwhere w(t) is a weight funtion. The form of the weight funtion is w(t) = exp(��2=2) with� = (t � b)=a where b is the o�set of the Gaussian and a is the width of the Gaussian. If we setg(t) = 1, we an dedue what the e�et of w(t) has on the basis funtions os(!t). Beause ofour experiene with Fourier transforms and the onvolution theorem in partiular, we an proeedwithout any expliit alulation1:F 0(!) = W (!0)~ Æ(!0 � !) +W (!0)~ Æ(!0 + !) = W (!) +W (�!)Here, W (!) is the Fourier transform of the Gaussian weight funtion, also a Gaussian and thedelta funtions arise from the transform of the osines. So, what has happened? By restritingthe region of analysis in the time domain, we have broadened our frequeny basis funtion, whihwas originally a delta-funtion, by onvolving it with a Gaussian. This is one of the key propertiesof wavelets: they restrit their attention to areas that are �nite in both the frequeny and timedomains. In ontrast, the Fourier transform impliitly relies upon an in�nite extent in the timedomain and an in�nitely small region of the frequeny domain. So, in that sense, the windowedFourier transform is a kind of wavelet analysis. We'll need to make this more rigorous and add insome other restritions.Let's onsider the example of the funtion g(t) = sin(t2) some more. Furthermore, let'sonsider the family of Gaussian weight funtions w(t; a; b) = exp(��2=2) with � = (t � b)=a oneagain. Instead performing analysis for all angular frequenies !, let's onsider a �xed frequeny !0and ask the question `Where does the signal have frequeny !0?' This is a question that waveletanalysis is well suited for answering.To approah this problem, we'll just alulate the Fourier osine transform at a single frequeny!0 = 20 rad s�1 for a variety of a and b in the weight funtion. The results of this analysis areshown in Figure 4. The �gure shows that there is a unique width (amax and time o�set bmax forwhih the response is maximized and we an say, vaguely, that in a width amax around time bmax,the signal looks most like a osine wave with frequeny 20 radians per seond.2. The Wavelet TransformThroughout the past setion we have used a measure of how similar two funtions are to eahother: hf(t); g(t)i = Z 1�1 f(t)g�(t)dt (1)1The symbol ~ is used for onvolution and � is used for omplex onjugation
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Fig. 4.| Fourier osine transform for g(t) = sin(t2) at !0 = 20 for a variety of a and b values inthe window funtion. The maximum value of the transform is marked with a ross. The ontoursdesend in inrements of 20% of the maximum from the maximum. Negative ontours are dotted.The ross represents range where the signal looks most like a osine wave with !0 = 20.The omplex onjugate (�) is thrown in for ompatibility with omplex funtions. Again, if thefuntions are similar, the absolute value of hf(t); g(t)i will be large. If they are di�erent, thevalue will be small. Remember, the value is just a real (or maybe omplex) number. Examinethe notation: the angle brakets are reminisent of the notation for an inner (or dot) produt invetor geometry or bra-ket notation in quantum mehanis for a reason. The language of funtionalanalysis that is used here draws expliit parallels between vetors in a vetor spae and and funtionsin a \funtion spae." This integral is a way of expressing the dot produt between two funtions.Also note in a vetor spae that the length of a vetor is measured by taking the square root of the



{ 7 {vetor dotted with itself: jjf(t)jj2 � hf(t); f(t)i. The same is true here:jjf(t)jj2 = Z 1�1 f(t)f�(t)dt = Z 1�1 jf(t)j2dtThis is alled the \L2 norm of funtion spae." All funtions with a �nite value of jjf jj are alledL2 funtions, and are also known to the rest of the world as \square-integrable." This is importantbeause it means the funtions are friendly and well behaved. In Quantum Mehanis the bra-ketnotation was used to projet a blended wave funtion onto \basis" states e.g. the states of theH I atom. The bra-ket produt hf j i was used to alulate the amplitude of one basis vetor ina mixed state, so this notation is exatly the ontext in whih bra-ket notation was developed inquantum.Returning to wavelets, we'll de�ne the wavelet transform of a funtion f with respet to awavelet  as hf;  i. In partiular, the wavelet is required to be a funtion of � = (t� b)=a: (�) =  � t� ba �The wavelet  (�) is referred to as the mother wavelet. In general the wavelet is saled to = 1pa � t� ba � (2)so that the L2 norm is the same for all wavelets derived from a given mother wavelet. Suh a groupis alled a wavelet family. So, the full result of the wavelet transform is the inner produt betweenthe funtion f and the wavelets, with a full range of a and b. We'll de�ne this result as W (a; b)making this the standard notation for a wavelet transform:W (a; b) � hf(t);  (a; b; t)i = Z 1�1 f(t) 1pa �� t� ba � dt (3)The result of the transform, W (a; b) is, as the notation implies, a funtion of a and b and theamplitude represents how well mathed the wavelet is to the input funtion as a funtion of a andb. We de�ne the wavelet power as P (a; b) � jW (a; b)j2.At this point, the disussion implies that any L2 funtion an be a wavelet (like a Gaussian),but we want to impose a further restrition. We'll require thatZ 1�1 1pa � t� ba � dt = 0This is, purportedly, why wavelets are so named: they wave above and below the axis so that theirtotal integral is zero. That ould just be an old mathematiians tale. This is often expressed interms of the \admissibility riterion" for wavelets whih requires the integralC = Z 1�1 j b (!)j2! d!



{ 8 {to be �nite. Here, b (!) is the Fourier transform of the wavelet  (�). As an aside, the admissibilityriterion is a little less stringent than the requirement that the wavelet have zero integral but if thewavelet integrates to zero, then b (0) = 0 sine there is no total power, and the wavelet will ful�llthe admissibility riterion. The reason for this requirement is that it allows the reonstrution of asignal from the results of a wavelet transform. The inverse transform of the wavelet funtion isf(t) = 1C Z 1�1 Z 1�1W (a; b) (a; b; t)da dba2 : (4)This looks ompliated, but rest assured, you will not have to alulate these expliitly.Without further ado, let's look at some wavelets! Perhaps the losest wavelet to what we'vebeen examining is the Morlet Wavelet after the mathematiian that popularized it: Susan Wavelet.The wavelet is de�ned as  (�) = ��1=4 exp(i!0�) exp(��2=2) (5)This is rather familiar! It's just the Gaussian envelope on a osine and sine funtion. !0 is adimensionless frequeny. The only di�erene between this funtion and the one we onsidered atthe end of the previous setion is that the sines and osines are �xed with respet to the waveletand not with respet to the signal.The Morlet wavelet is omplex-valued. In ontrast, a family of wavelets that's often used whihis stritly real is the derivative of a Gaussian lass of wavelets. They are de�ned as�1p�(m+ 1=2) dd� exp���22 �We'll fous on the ase where m = 2 so that this equation beomesr 43� (1� �2) exp���22 �This is often alled the Mexian Hat Wavelet. Figure 5 plots a Morlet wavelet and two derivativeof Gaussian wavelets (DOG).3. Using Wavelets to Detet SignalsYou may have notied that the wavelet transformation moves a perfetly good 1-D time seriesinto a 2-D array of power as a funtion of sale (a) and o�set (b). This seems like a large expansionof an otherwise ompat dataset and you may have serious doubts about how we'll possibly make itto data ompression. We'll get around to this. Here, we'll use illustrate how wavelets an be usedto detet signals. One ommon type of problem in astronomial data analysis is �nding a Gaussiansignal in a noisy set of data. Consider the signal in the left-hand panel of Figure 6. Two Gaussianshave been injeted into the signal. One has signal-to-noise in one seond of 0.8 and a width of 10
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Fig. 5.| The left panel plots a Morlet wavelet with !0 = 6 and the right panel plots two derivativeof Gaussian wavelets (DOG) with m = 2 and m = 6.

Fig. 6.| The left panel plots a test signal with low signal to noise. The signal without noise isplotted with a thik gray line. The right panel plots a graysale image of the power in the waveletoeÆients using a DOG wavelet with a degree of m = 2. The dashed blak ontours are the 99%on�dene limit on the noise produing the wavelet oeÆients of amplitude shown. The horizontaldotted lines indiate the loations at whih the signal is loated.



{ 10 {s. This pulse is entered at 387 s. The other Gaussian has a signal-to-noise of 0.4 in 1 seond anda width of 50 s and is entered at 721 s.Sine the signal is a Gaussian, using a DOG wavelet is a good idea. This sort of reasoning isquite ommon with wavelets: the wavelets are hosen based on how well mathed they are to theexpeted signals. (Some people deride this hoie as arbitrary, but the snipey wavelet reply is justto say that the hoie of a Fourier basis or a Legendre basis is equally arbitrary.) We use a waveletwith m = 2 and perform a transform for a range of a 2 [0; 200℄ and b 2 [0; 1024℄. This produeswavelet oeÆients as a funtion of a and b. The wavelet power is just the absolute value of theoeÆients squared (use the modulus squared for omplex oeÆients). A graysale image of thewavelet power is shown in the left-hand panel of Figure 6. The image shows signi�ant power atthe o�sets (b) orresponding to the two signal pulses and the sales (a) at whih the power peaksshows that the peak at 387 s is narrower than the one at 721 s. Blak ontours indiate the 99%on�dene interval in the signi�ane of our signal detetion.How are we determining whether the power in the wavelet oeÆients is \signi�ant?" Weaomplish this by determining the response of the wavelet transform to a random signal, n(t).Then, sine the wavelet transform is a linear transform2 , we an break up an input signal f(t) intosignal omponents s(t) and noise omponents n(t):f(t) = s(t) + n(t). If the wavelet transform ofthe omposite signal shows a response larger than we'd expet for a random signal, we'll suspettrue signal at the sale and o�set where the exess ours. Before we get to atually evaluatingthe response of the Wavelet transform to noise, we need to make a few statements about how thetransform is atually alulated.3.1. Implementing the Continuous Wavelet TransformAs written, the wavelet transform involves a lot of alulation and you might suspet that alot of it is redundant. You'd be right. Again. To speed things up, the �rst thing to look at in thewavelet transform is to view the transform as a onvolution with b as the lag parameter. And whenwe hear onvolution we think Fourier Transforms! If we regard a as �xed, then we an write downthe inner produt of the funtions in terms of b:W (a; b) = Z 1�1 f(t) 1pa �� t� ba � dtSo, if we take the Fourier transform of this equation, we getW (!a; !b) = pa bf(!) �(a!)2In the sense that the transform of a sum is the sum of the transforms, and the transform of the produt of asalar and a funtion equals the salar times the transformed funtion.



{ 11 {whih is just the onvolution theorem of Fourier transform wrapped up with the saling theoremwhih says  � ta�() a b (a!)The notation() indiates the two funtions are a Fourier transform pair. Note that the evaluationof the wavelet transform is partiularly easy if you know the expliit form of the wavelet's Fouriertransform. Then, for eah sale, the wavelet oeÆients an be alulated by simply evaluatingthe transformed wavelet in the frequeny domain, multiplying by the transformed data to do theonvolution, and inverse transforming. The Fourier transforms of the two wavelets we've mentionedabove are:Morlet: �1=4H(!) exp �(a! � !0)22 � DOG: �imp�(m+ 1=2) (a!)m exp ��(a!)22 �Here, H(!) is the Heaviside step funtion whih has H(!) = 0 for ! < 0 and 1 otherwise.Hene, a quik algorithm for implementing the ontinuous wavelet transform in the ase wherethe Fourier transform an be expliitly evaluated is1. Fourier transform the data.2. For eah sale a, multiply the saled transform of the mother wavelet times the transformeddata. See x3.3 for a disussion of what sales need to be sampled.3. Transform eah sale bak.3.2. The Noise Response of the Wavelet TransformTo determine the response of a wavelet transform to signal, we onsider the power in thewavelet transform, P = jW (a; b)j2, for a random input signal n(t).However, as pointed out in the previous setion (whih is why it is where it is), the wavelettransform an be thought of as a onvolution between a wavelet of sale a and a funtion as afuntion of lag parameter b. Then,E(P ) = E �jn(t)~  �(a; b; t)j2�However, the expetation value of this funtion an be Fourier transformed to split up the onvo-lution:E �jn(t)~  �(a; b; t)j2� = E �Z 1�1 jn(!)j2j (a; b; !)j2d!� = Z 1�1 E(jbn(!)j2)j b (a; b; !)j2d! (6)



{ 12 {The �rst equality holds by transforming into the Fourier domain and following the proof of thePower theorem (Parseval's Theorem).jn(t)~  �(a; b; t)j2 = [n(t)~  �(a; b; t)℄ [n(t)~  �(a; b; t)℄�= Z 1�1 bn(!) b �(!) exp(�i!t)d! Z 1�1 bn�(!0) b (!0) exp(i!0t)d!0= Z 1�1 Z 1�1 bn(!0)�bn(!) b (!0) b (!)� exp �i(! � !0)t� d! d!0= Z 1�1 jbn(!)j2j b (!)j2d!Returning to the last equality in Equation 6, the expetation value has been passed into the integralwhih an be done for random signals. The expetation value of a known wavelet funtion is equalto the funtion (just like the expetation value of 3 in many realizations of 3 is 3). The expetationvalue for a random signal is determined by haraterized by its variane �2 so Equation 6 beomesE (P ) = Z 1�1 E(jbn(!)j2)j b (a; b; !)j2d! = Z 1�1 �2j b (a; b; !)j2d! = �2 (7)So, we have shown that the expetation value of wavelet power is equal to the variane of a randomsignal. The wavelet transform preserves the variane of the noise in the resulting oeÆients. Wewould like to know not just the expetation values but the distribution of the wavelet oeÆientsand the wavelet power. This is not easy to demonstrate, however, in a statement without proof, thewavelet oeÆients for a pure noise signal are distributed aording to a normal distribution withvariane �2 for all a and b. This means that the wavelet power is distributed as a �2 distributionwith 1 Degree of Freedom if the wavelet is real and 2 DOF if the wavelet is omplex. This is beausea random set of omplex numbers has a normal distribution of variane �2 in the real plane andthe same in the omplex plane. In other words, the PDF, � of the wavelet power P is:�(P ) = �2�Pk�2 ; k�where k = 1 for real wavelets and k = 2 for omplex wavelets and �2 is the expetation value ofthe noise variane. Thus, using the �2 umulative distribution, we an hoose a probability uto�and require the wavelet power assoiated with a signal to be greater than this level to be \real." InFigure 6, we looked for what level of wavelet power would be generated by random noise only 1%of the time. Using the CHISQR CVF funtion in IDL with arguments of 0.01 for the 1% on�deneinterval and 1 for the degrees of freedom (the DOG is a real wavelet). Then, we put in a ontourat this 99% on�dene interval showing there is signi�ant power around where the Gaussian inputsignals are loated, as in Figure 6.3.3. Redundant InformationAs we've noted before, the ontinuous wavelet transform ontains a lot of redundant informa-tion. In the next setion, we will begin disussion the disrete wavelet transform. Like the Fourier



{ 13 {transform, we want to know how many sample values are needed to aurately reprodue a signal.In partiular, we are onerned with how many sales (a) and o�sets (b) are needed to obtain aomplete piture of the wavelet transform.The �rst thing we ould do to minimize redundany is to eliminate a large amount of the saleinformation. To apture all the information using wavelet transforms, a signal must be sampled atsales spaed logarithmially with a maximum spaing set by the wavelet being used. In general,if the sales are spaed by sales that inrease by a fator of p2, all sales will be well sampled forall wavelets. Thus, the sales that should be sampled are aj = a0 � 2j=2, all the information shouldbe retained. Here, a0 is some minimum sale of the data under examination.The reason for this logarithmi stepping in sale is that for al � am, the wavelet �lters aresmoothing on very similar sales and the di�erene is quite small. This redundany an be quanti�edwith the inner produt between the two wavelet funtionsh (al; bk = 0);  (am; bk = 0)i = Z 1�1  (al; bk = 0; t) �(am; bks = 0; t)dtFor al = am this integral equals 1 (beause of wavelet normalization) and falls o� from 1 as amhanges. This behavior is shown in Figure 7. The integral is often alled the overlap integraland represents how similar the wavelet funtions are, whih in turn indiates how redundant theinformation is for the transforms with the two di�erent �lters. Sine the overlap drops o� as afuntion of the logarithm of the sale parameter, logarithmi sampling of sales is adequate forreonstrution.In a similar fashion, for a �xed sale a0 the spaings of b are redundant for very small steps ofb ompared to how fast the wavelet osillates. This is beause the wavelet smoothes the data onthese sales and the sampling is redundant. To parameterize how \fast the wavelet osillates," wealulate the Fourier equivalent frequeny of the wavelet, whih is de�ned as the maximum valueof the Fourier power of the wavelet: !eq � max j b (!)j2. This is a sensible de�nition beause itharaterizes a wavelet by the dominant frequeny of its osillatory omponents. This de�nes theFourier wavelength of the wavelet by �f � 2�=!eq. For the Morlet and DOG wavelets, the Fourierwavelengths are �Mor = 4�a!0 +p2 + !20 and �DOG = 2�apm+ 1=2On sales signi�antly smaller the �f , the data are redundant sine the wavelet smoothes over thesesales. A wavelet should be sampled with Æb = �f=2, whih is the analogue of the Nyquist riterion.The spaings of these points indiate that many values of b must be sampled for small values of a,but for large values of a, only a few values of b are needed for all information.
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Fig. 7.| The overlap integral, h (al; b = 0);  (am; b = 0)i, for a DOG wavelet with m = 2. Thesale al is �xed at the value indiated by the solid vertial line. The dashed vertial lines indiateam = al=2 and am = 2al where the overlap has fallen o� signi�antly.4. The Disrete Wavelet TransformAs noted previously, ontinuous wavelets take a 1-D signal and make it into a 2-D representationin wavelet spae. This learly introdues a lot of redundant information. In addition, most signalsthat we are exploring are disretely sampled, as is the ase with real time series. At this point,we will hange methodologies to explore the Disrete Wavelet Transform. Unlike most funtionalanalysis where the disrete analysis is just an approximation, Disrete Wavelet transforms atuallyhave more utility than the Continuous variety. To begin with, everything will look like the naturalgeneralization of the ontinuous, mathematially grounded transforms that we've been disussing.As we progress, we'll move father away from this treatment.Begin with a vetor of data xi. We'll assume that the data are well gridded, that is to sayspaed by a uniform time interval Æt. We'll start by onsidering ontinuous wavelets with losedform expressions, i.e. the wavelets we've been using. In this ase, the wavelet oeÆients aresampled on a grid of a and b values, with b being spaed every Æt. ThenW (aj ; bkÆt) = N�1Xn=0 xn 1paj  ��(n� bk)Ætaj � : (8)Sine our lass is fousing on IDL, we'll adopt the Fourier transform onventions of IDL to



{ 15 {make this easy to implement. Other languages would use their own onventions.xp = 1N N�1Xn=0 xn exp��2�inpN �Then, the Disrete Fourier Transform an be used with the onvolution theorem for a fast alulationof the oeÆients. W (aj; bk) = N�1Xp=0 xppaj � (aj!p) exp (i!pbkÆt) (9)Here, !p is the vetor orresponding to the frequenies sampled in the Disrete Fourier trans-form of x, namely !p = 2�p=NÆt for p � N=2 and !p = 2�(p�N)=NÆt for p > N=2.The normalization to keep the wavelet at onstant power for all values of the sale aj is �(n� bk)Ætaj � =s Ætaj 0�(n� bk)Ætaj �where  0 is the mother wavelet.4.1. Reonstrution Using Disrete WaveletsLike the Fourier transform, the wavelet oeÆients W (aj; bk) an be used to reonstrut asignal from the onstituent parts. However, sine the wavelet transform is onvolving the signal atsome �xed minimum sale a0, detail on levels smaller than a0 will be lost. Even when sampled withminimum redundany, the wavelet transform still ontains more information than the original signal.As suh, the inverse wavelet transform an atually rely upon a di�erent funtion to reonstrutthe data. The basi proess involves reonstruting using the inverse transform (Equation 4) witha simpler funtion and a funtion that orrets for the di�erene between the original wavelet andthe reonstrution funtion. This is a blatant statement without proof sine the details are irksome(but available in Farge's 1992 artile in the Annual Review of Fluid Mehanis). The utility ofdelving into this is that a muh simpler funtion an be used to reonstrut the original signal, likethe delta funtion. In the speial ase that the sales are hosen logarithmially, with a fator of2Æj between eah level, the data an be reonstruted with:xk = Æj(Æt)1=2C0 0(0) JmaxXj=0 Re fW (aj ; bk)gpaj ;where C0 is a saling onstant that depends on the wavelet and  0(0) is the amplitude of the motherwavelet at bk = 0. The Re operator indiates that the real part of the expression should be used.Note that in this reonstrution formula, the signal at any point is just a sum over the di�erentsales that give rise to it.



{ 16 {Given the possibility of reonstrution, a wavelet deomposition seems to present the opportu-nity to �lter the data. In short, a �lter would onsist of setting the power at a given sale to zero,thereby eliminating that sale from the reonstrution. In Fourier �ltering, this is aomplished bysetting unwanted frequeny omponents to zero. One problem immediately rops up: unlike theFourier basis funtions, the wavelets that we have been using are non-orthogonal whih preventsreonstrution. This means that the wavelets oeÆients on di�erent sales ontain redundantinformation that, when summed into a reonstrution, interferes in preisely the orret fashion toreturn the original signal. If a sale is blindly set to zero, wavelets at di�erent sales may ontributeerroneous power in the reonstrution. The solution to this problem is to onstrut wavelets thatare orthogonal, so that a single wavelet oeÆient represents the total power of a given struture ata �xed sale. This proves to be diÆult with the wavelets we are dealing with. There are no losedform expressions for ontinuous wavelets that are orthogonal for all a and b. Through judiiousseletion of a set of a grid of aj and bk, orthogonal wavelets an be onstruted. This is reminisentof a disrete wavelet transform; and indeed, we must operate in the disrete wavelet transform inorder to make any progress. 5. Orthogonal WaveletsIn the ontinuous ase, the statement of orthogonality of wavelets is justh (ai; bi; x);  (aj ; bj ; x)i = Æ(ai � aj ; bi � bj)In the disrete ase, the inner produt between two funtions ishf(xk); g(xk)i = N�1Xk=0 f(xk)g�(xk):This is just the analog of Equation 1 realized in the disrete ase. Everything we said about the be-havior of the inner produt there should hold in the disrete ase. A similar de�nition of orthogonal-ity to the ontinuous ase follows for the disrete ase with h (ai; bi; xk);  (aj ; bj ; xk)i = Æai ;ajÆbi;bj :To illustrate the utility of orthogonal wavelets with respet to �ltering, we an draw a parallelwith vetor spaes. In an orthogonal basis of a vetor spae, the dot produt between two di�erentbasis vetors is zero. A vetor is onstruted as the sum of the projetions onto the basis vetorstimes the basis vetors. For disrete funtions with an orthogonal basis, the projetion onto theith basis funtion is just hf;  (ai; bi)i and the funtion is reonstruted muh more simply than thenon-orthogonal ase: f =Pijhf;  (ai; bj)i (ai; bj). (One again, this sum may look quite familiarif we re-write the inner produt in the notation of quantum mehanis: jfi = Pij j ijih ij jfi.)There is beause there is no interferene between terms in this sum beause the overlap integrals(sums) between the orthogonal funtions are zero (this is the de�nition of orthogonal). Filteringis aomplished by dropping \unwanted" terms from the sum and reonstruting. Sine the basisfuntions are orthogonal, there is no exess information added in. This is highly analogous toFourier �ltering.



{ 17 {It remains to onstrut an orthogonal wavelet. So far, we've made no assumptions of ontinuityor di�erentiability, though all our wavelets have been smooth so far. The simplest orthogonalwavelets are not ontinuous. We shall begin our disussion with the Haar wavelet whih is adisontinuous, orthogonal wavelet. The mother wavelet is de�ned on the interval between 0 and 1as  0(�) = ( 1; 0 � � < 1=2�1; 1=2 � � < 1:The wavelet is well normalized in that R1�1  0(�)d� = 0 and R1�1 j 0(�)j2d� = 1. The left-hand panel of Figure 8 plots the wavelet. The right-hand panel shows how the Haar wavelet is\interpolated" onto a �xed grid of points for the Disrete Wavelet Transform. The sampling of thefuntion at the �s is quite easy in this ase!

Fig. 8.| The Haar wavelet. The left-hand panel plots the wavelet as it is de�ned and the right-handpanel shows the ease of sampling the wavelet at disrete points, marked by �s.This wavelet is orthogonal to other Haar wavelets provided that for � = (t� b)=a, a = 2�k forsome integer value of k and b=a �  is also an integer. The negative sign on k is just for the sakeof notation later. For the mother wavelet ase (i.e. a = 1) b must be an integer, so other Haarwavelets at this sale are just the mother wavelet translated by integer values so that the waveletsdon't overlap. In this ase, the produt of one wavelet by another is identially zero for all valuesof t, showing these are orthogonal. For di�erent sales, let's examine the inner produt of  0 with



{ 18 {the wavelet that has k = 1 and  = 1 whih has the form 1;1(t) = p2( 1; 1=2 � t < 3=4�1; 3=4 � t < 1:We have used the notation  k; to denote this wavelet where k and  are integers determining thesale and o�set respetively. The inner produt of this with the mother wavelet ( 0;0) is just the�1 (from  0;0) times the integral of  1;1 over the range [1/2,1) whih is zero by inspetion. For allvalues of k and  that are integers, the wavelets will be orthogonal. This example may be aided bystudying some examples of the Haar wavelet for di�erent values of k and  whih appears in Figure9.
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{ 19 {say, we just take the inner produt of the funtion with eah of the wavelets in our in�nite basis.Restriting to the interval [0; 1), any funtion with zero mean an be represented on this interval asf(t) = 1Xk=0 2k�1X=0 wk;hf(t);  k;(t)i= w0;0 Z 10 f(t) 0;0dt+ w1;0 Z 10 f(t) 1;0dt+ w1;1 Z 10 f(t) 1;1dt+ w2;0 Z 10 f(t) 2;0dt+ w2;1 Z 10 f(t) 2;1dt+ w2;2 Z 10 f(t) 2;2dt+ w2;3 Z 10 f(t) 2;3dt+ 1Xk=3 2k�1X=0 wk; Z 10 f(t) k;dt:Sine all the basis funtion have zero mean, there is no way that their linear ombination anhave a non-zero mean. To represent any given funtion, we need to add in an o�set equal to theintegral of the funtion aross the interval under onsideration, whih an be thought of as theinner produt of the funtion with a saling funtion � whih is equal to 1 over the unit interval:hf(t); �(t)i = hf(t); 1i. For other wavelets, the saling funtion is di�erent. The reason for thisis that the wavelet and its saling funtion form a pair suh that one an be derived from theother. Thus a partiular wavelet will have a saling funtion determined by that wavelet. We won'tartiulate the preise relationship here, but we will point out where the saling funtion ours inthe most useful ases.So, now we know how to represent an arbitrary funtion as the sum of Haar wavelets. Let'sapply this method to sample data. Using some lever matrix manipulations, we'll be able to vastlyspeed up the alulation of wavelet oeÆients without having to resort to Fourier transforms.This results in the Fast Wavelet Transform whih (when done right) is even FASTER than theFast Fourier Transform. Like the FFT, let's assume we have 2N data that we're transforming.Let's assoiate these data with the unit interval [0,1) so that eah datum represents a step of 2�Nalong this interval. We will need to onsider a total of N sales with 2(N�1) wavelets at eah sale.This means there will be a total of 2N wavelet oeÆients. Immediately, this suggests that theredundany we had seen in the previous ases is gone. Let's store the wavelet oeÆients in a vetorwith the �rst element being the saling oeÆient s0 = hf(t); �i. Then, the wavelet transform an



{ 20 {be represented as a matrix multipliation266666666664
s0w0;0w1;0w1;1w2;0w2;1...

377777777775 = 266666666664
 � � �! �  0;0 �! �  1;0 �! �  1;1 �! �  2;0 �! �  2;1 �!...

377777777775| {z }�	
266666666664
x0x1x2x3x4x5...

377777777775 (10)
This equation is the analog of Equation 8 using a matrix multipliation to represent the transform.The matrix 	 is the interpolation of the wavelet funtions onto a disretely sampled grid. Beausethe Haar funtions are so simple, the interpolation is relatively easy. In the ase of N = 3, thetransform matrix looks like

	 =
26666666666664

1 1 1 1 1 1 1 11 1 1 1 �1 �1 �1 �1p2 p2 �p2 �p2 0 0 0 00 0 0 0 p2 p2 �p2 �p22 �2 0 0 0 0 0 00 0 2 �2 0 0 0 00 0 0 0 2 �2 0 00 0 0 0 0 0 2 �2
37777777777775The values of eah row are inreasing f1;p2; 2; � � � ; 2N=2g beause of the normalization ondi-tions. Sine there are 8 points (N = 3), eah point represents 1/8 of the interval between 0 and1. Thus for a matrix with element ai;j in row i and olumn j, eah row must have (Pi a2i;j)=8 = 1and every row but the �rst has Pi ai;j = 0.Surprisingly, this matrix is atually an orthogonal matrix so that its transpose is its inverse.Thus, the inverse wavelet transform an be aomplished by multiplying the vetor of waveletoeÆients w by the inverse matrix: x = 	TwMaybe this isn't so surprising sine eah row of the matrix is an orthogonal vetor to all the otherrows beause of the way it was onstruted.5.1. Implementation of the Haar Wavelet TransformWhat makes orthogonal wavelet transforms quik to implement is the reognition that thetransform matrix 	 an be broken down into a series of matrix multipliations that are themselves



{ 21 {very quik to implement omputationally. There are two steps for eah sale onsidered and thus,in this simple implementation, there are 2N matrix multipliations. The method works from thesmallest sales to the largest sales. At eah sale you multiply the data vetor by a onvolutionmatrix and a permutation matrix.For the Haar wavelet, the onvolution matrix looks like this:
C0 = 1p2

266666666664
1 11 �1 1 11 �1 1 11 �1 . . .

377777777775When this matrix operates on a data vetor, the �rst row of eah blok smoothes the two elementstogether, so this is alled a smoothing row and the resulting salar is alled a smooth omponent.The seond row reords the di�erene between eah pair of elements, and is alled alled the detailrow and the resulting salars are alled the detail omponents. The resulting vetor ontains thesmooth and detail omponents interleaved. The permutation matrix operates to move all thesmooth omponents into the �rst part of the array and the detail omponents in the latter half ofthe array. While this is best aomplished numerially by manipulation of the vetor indies, forthe sake of ompleteness, the permutation matrix has the form
P0 = 2666666666664

1 0 0 � � �0 0 1 0 � � �0 0 0 0 1 0 � � �...0 1 0 0 � � �0 0 0 1 0 � � �...
3777777777775If our array is 0 indexed (e.g. as in IDL), this puts the 0th, 2nd, 4th ... elements in the 0th, 1st,2nd, ... elements of the new array and 1st, 3rd, 5th, et. elements into the (2N=2)th, (2N=2 + 1)th,et. elements of the new array. The proess is then repeated with onvolution matrix C1 andpermutation P1 whih operate only on the �rst half (smooth omponents) of the resulting vetor.



{ 22 {Thus, C1 has the following struture.
C1 = 2666666664 1p2 26666664 1 11 �1 1 11 �1 . . .

37777775 00 I2N=2
3777777775and the permutation matrix similarly splits into bloks of size 2N=2. I2N=2 is the identity matrixwith size N=2 �N=2.This proess is iterated N times so thatw = PN�1CN�1PN�2CN�2 � � �C1P0C0| {z }	 xAs indiated by the brae, the produt of all the matries gives the wavelet matrix. This suggestshow to build the matrix in the disrete wavelet transform from simple matries. However, theresults of suh an operation may be far from intuitive. It helps to view the proess step by step.At eah level, operation by the matrix C produes smooth omponents of the data alternatingwith detail omponents of the data. The matrix P separates them and the proess is repeated onthe smooth omponent. In what follows, the smoothed omponents are given by s's with the dataafter the �rst smoothing being si and the data after the seond smoothing being Si, and the detailomponents given values with d's { di after the �rst detail onvolution and Di after the seonddetail onvolution. Then, the whole proess an be viewed shematially as:26666666666664

y1y2y3y4y5y6y7y8
37777777777775 Convolve�!

26666666666664
s1d1s2d2s3d3s4d4

37777777777775 Permute�!
26666666666664
s1s2s3s4d1d2d3d4

37777777777775 Convolve�!
26666666666664
S1D1S2D2d1d2d3d4

37777777777775 Permute�!
26666666666664
S1S2D1D2d1d2d3d4

37777777777775 (11)
This gives a sense of what data end up where after this kind of Disrete Wavelet Transform.Unfortunately, we've replaed a matrix multiply of a 2N � 2N matrix by a vetor of length2N with 2N suh matrix multiplies. Given that the original state wasn't so hot, the later stateseems to have only exaerbated the problem. Fortunately, this is atually the path of suess.The general lass of operations desribed in the P and C matries are very fast to implement onomputers. However, it is rather triky. This proess is laid out in Numerial Reipes; and if youstudy it arefully (x13.10), you will note that the partial wavelet transform (one onvolution and



{ 23 {one permutation) is atually implemented by doing bit shifting operations on the indies of thearray. This an ause headahes. However, when implemented in this supremely lever fashion,the wavelet oeÆients an be alulated in O(n) steps as opposed to the fast Fourier transformwhih requires O(n logn) steps. The reason why this is important is not beause you need to reallyunderstand what's going on with the guts of the fast wavelet transform, but rather if you try toread Numerial Reipes you'll understand why things look so spooky.5.2. Filtering with the DWTFiltering is straight forward from this point. As mentioned previously, with an orthogonalbasis, you an �lter by setting the wavelet oeÆients of unimportant sales to zero or signi�antlyreduing them. An example of this �ltering is shown in Figure 10. We return to our noisy dataset with two Gaussians injeted (Figure 6) . The data vetor is 210 elements long so we apply thepartial wavelet transform 10 times, in reduing the vetor to wavelet oeÆients. These oeÆientsare plotted in the left-hand panel of Figure 10. We set all oeÆients with wavelet amplitude lessthan 3� to 0 and perform the inverse transform. The �ltered data set appears in the right-handpanel of Figure 10. Instead of the Haar wavelet, this wavelet transform uses the Coiet waveletoeÆients of degree 3 sine they produe wavelets that are smoother and shaped more like aGaussian. A Coiet wavelet of degree 3 appears in Figure 11. See x5.3 for more disussion abouthow to atually implement the Coiet wavelet.

Fig. 10.| The left panel plots wavelet oeÆients of a simulated signal using the Coiet disretewavelet transform of degree 3. The lines indiate the lipping levels used in the data. The right-hand panel plots the original test signal in blak, the true signal in red and the reonstruted signalin blue.
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Fig. 11.| Wavelet Examples. The left-hand panel shows a Coiet wavelet of degree 3 used in the�ltering of Figure 10. The right-hand panel shows a Daubehies wavelet with 4 oeÆients (seex5.3). 5.3. Other Wavelets FamiliesThe Haar wavelet is the simplest wavelet to be implemented in this fashion. Many otherwavelet families are produed by using di�erent entries in the onvolution matrix. These familiesare signi�antly better at analyzing smooth signals but we negleted them for the sake of simpliity.One of the most ommonly seen wavelets is the Daubehies wavelet with 4 oeÆients:C0 = 26666664 0 1 2 33 �2 1 �00 1 2 33 �2 1 �0 . . .
37777775The onstants i are given by0 = (1 +p3)=4p2; 1 = (3 +p3)=4p2; 2 = (3�p3)=4p2; and 3 = (1�p3)=4p2This peuliar set of numbers is the solution to the equations20 + 21 + 22 + 23 = 1 and 20 + 31 = 0whih are required for orthogonality of the matrix, and the numbers also have two moments whihvanish: 3 � 2 + 1 � 0 = 0 and 03 � 12 + 22 � 30 = 0:



{ 25 {The �rst equation is the zeroth moment of the wavelet oeÆients (whih orresponds to the seondrow of the matrix, see below). The seond equation is the �rst moment, with eah wavelet oeÆientmultiplied by its position in the sum. The seond moment would just have the position in the sumsquared multiplied by eah oeÆient and so on. The number of vanishing moments is intrinsiallyrelated to how smooth the resulting wavelet is. This wavelet, sine it has 4 oeÆients is alled theDaubehies 4 wavelet. You might wonder what this wavelet looks like.It's fairly straight forward to produe a wavelet simply by putting 1 in the appropriate positionin the wavelet oeÆient matrix and inverse transforming. This will produe the wavelet orre-sponding to that entry in w. The orret position in the matrix orresponds to the �rst \detail"oeÆient in the �nal wavelet array (the D1 in Equation 11). In general, if there are n waveletoeÆients, the 1 should go in the entry of the array that's the next largest power of 2 greater thanor equal to n. For example for the Daubehies wavelet of order 6, the 8th element should be 1. Todetermine the saling funtion, the �rst element of the array should be set to 1 before the inversewavelet transform is performed.The Daubehies 4 wavelet appears in the right-hand panel of Figure 11. A Coiet wavelet ofdegree 3 (Figure 11, left) has 18 wavelet oeÆients. If all you are given is a set of these waveletoeÆients, the matrix C0 an be built up algorithmially. The oeÆients are inserted in the �rstrow of C0, beginning in the �rst olumn. Then, the next row is �lled with the oeÆients in reverseorder with every other oeÆient multiplied by �1. The next row is the same as the �rst row, exeptit is padded in front by two olumns of zeros. The rows are often alled the smoothing row (for theoriginal oeÆients) and the detail row (for the reversed, modulated oeÆients). The zeros areinserted so that the start of the smoothing row always falls on the diagonal. The smoothing rowrepresents the saling funtion, �, sampled with the smallest possible number of points to retainall the properties of the wavelet and the detail row represents the wavelet, , sampled with thesmallest number of points. This simple algorithm illustrates an informal relationship between thetwo funtions, but the atual relationship is buried deeper in mathematis.6. Higher DimensionsTo this point, we've dealt exlusively with wavelets in 1 dimension whih is �ne for some simpleanalysis, but astronomy relies upon multidimensional data. There are two ways to generalize ourresults. Returning to the ontinuous form of the transform for a moment, it's possible to writedown the inner produt metri in higher dimensions:hf; gi = ZV f(r)g(r)dVWith this de�nition, everything follows mutatis mutandi (hanging what needs to be hanged) toreprodue all the results in the Continuous wavelet transform setion. It's also possible to make awavelet that's not isotropi and this introdues angular dependene so that the wavelet oeÆients



{ 26 {inlude a funtion of angle rather than just sale and o�set.To use the DWT, the data will be ontained in a p dimensional array with eah dimensionhaving a length that is a power of two. The wavelet transform is inherently a one dimensionaloperation. The wavelet transform is simply applied to eah dimension suessively, and the orderdoes not matter! Thus, to transform the olumns of a two-dimensional matrix M, instead of justa olumn vetor, the wavelet transform is justW = 	Msine matrix multipliation operates independently on eah of the olumns. The resulting waveletoeÆients have been subsripted with a  to indiate that the olumns have been transformed.Then, the rows of the matrix must be transformed. To bring the matrix 	 to bear on the rows,the resulting matrix W needs to be transposed sine 	 operates on olumns and then transposedbak. So, the �nal wavelet oeÆients W are omputed byW = h	 (	M)T iT :If you reall a property of matrix algebra, (ab)T = bTaT , then this last equation beomes moreilluminating: W = �	MT	T �T = 	M	T = 	M	�1:This is a diagonalization of matrix M with respet to the basis vetors in 	, also known as aprojetion onto the basis vetors. With this identi�ation, the parallel between vetor geometryand funtional analysis has ome full irle! Also note that it does not matter whether you transformthe rows or the olumns �rst, whih you an hek with the methods used above.Unfortunately, matrix multipliation doesn't generalize to higher dimensions, so the matrixmethods in the DWT don't follow easily. Instead, the general strategy is to view a higher dimen-sional array as being omprised of a bundle of individual vetors of data and to apply the wavelettransform to eah one individually. Then the matrix is transposed using the generalized idea oftransposition where the vetors along one dimension are permuted into another.6.1. Using the 2-D Disrete Wavelet TransformUsing the methods desribed above, let's do a 2-D wavelet transform. Starting with a simpleimage whih onsists of a 2-D Gaussian (Figure 12), we perform a Coiet transform of order 3, �rstalong the rows and then the olumns. The resulting image ontains the wavelet oeÆients thatrepresent the Gaussian. The power in both domains is the same, muh as it is for the 1-D wavelettransform and we an hek this for the image thatXi;j M2ij =Xi;j W2ij



{ 27 {

Fig. 12.| The left panel shows an input image of a Gaussian in gray sale. Note that the axes of theimage are inverted along the y-axis with respet to how we usually write matries (but in aordanewith how we write oordinate axes). The middle panel shows the image after wavelet transformingeah olumn in the image. The right-hand panel shows a subsetion of the transformed image aftertransforming along the rows. The middle and right-hand panels are shown with a logarithmi olorstreth. Note the information in the image is ompated into a small number of wavelet oeÆients.In this ase, �ltering follows the same pattern as was done for the 1-D ase. First, we generatea noisy image of the Gaussian by adding randomly distributed noise with variane �2 to every pixelso the peak signal to noise level in the image is 1. The image is then wavelet transformed witha Coiet of order 3 and wavelet oeÆients with an absolute value less than 4� are set to zero.This is beause there are 2562 pixels in the image so we expet only a few 4� outliers, but many3� outliers. The oeÆients are then transformed bak to �ltered image. The proess is shown inFigure 13. 7. Image CompressionBak at the beginning of this doument, I mentioned that wavelets ould be used for theompression of images. This is beause they are good at enoding rather detailed information in afew elements. Filtering and ompression have a lot to do with eah other. In the ase of �ltering,you want to move to the wavelet domain to inrease the signi�ane of your signal relative to thenoise. In ompression, you want to move to the wavelet domain so that you an identify the mostimportant harateristis in the image: those that have the most power in the wavelet domain.To ompress an image, you just keep some fration of the \important" omponents of the image.There are two methods of ompression. In both ases, the wavelet oeÆients are ranked aordingto power (the square of the oeÆient). In the �rst ase, the top n oeÆients are retained and theremainder are set to zero. In the seond ase, the preision of the oeÆients is redued (i.e. oatingpoint numbers would be redued to integers). Both of whih ahieve a substantial ompression of
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Fig. 13.| The left panel shows an input image of a Gaussian in gray sale with noise added. TheGaussian is in there! Contours show the shape of the Gaussian with the lowest being 0.1 timesthe peak value. The middle panel shows a subsetion of the wavelet image indiating where theGaussian maps to in the wavelet domain. The right-hand panel shows the image after the �ltering isomplete with the same ontours to indiate the original shape of the Gaussian. The small featuresare from noise with enough power to avoid being �ltered.the data.Note that this isn't partiular to wavelets. The Fourier transform an be used for ompressionas well. Some image ompression algorithms use the Disrete Cosine Transform to extrat out�ltered information, like the JPEG standard. The JPEG-2000 standard uses wavelets instead. Thedegree of ompression is determined by the fration of the wavelets you keep. As an example,Figure 14 shows an image of a distinguished astrophysiist. The middle panel shows the imagereonstruted from top 1% of the wavelet oeÆients ranked by power and the right-hand panelshows the image reonstruted from 10% of the wavelet oeÆients. The quality of reonstrutionis signi�antly better in the latter ase and shows that there really isn't muh information in Figure14. But you probably knew that anyways...A. Referene MaterialFor the sake of ompleteness, here are the oeÆients for the Coiet wavelet of order 3 thatwe've been using so muh:-0.0037935129, 0.0077825967, 0.023452696, -0.065771911-0.061123388, 0.40517692, 0.79377722, 0.42848349, -0.071799822,-0.082301927, 0.034555029, 0.015880545, -0.0090079761, -0.00257451770.0011175187, 0.00046621695, -7.0983303e-05, -3.4599774e-05
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Fig. 14.| Demonstration of Image ompression using the Coiet wavelet. The left-hand panelshows the original image, the middle panel shows a ompression of 100� and the right-hand panelshows a ompression of 10�. REFERENCESFarge, M. 1992, Annual Review of Fluid Mehanis, 24, 395Graps, A. 1995, \An Introdution to Wavelets" in IEEE Computational Siene and Engineering,vol 2., num. 2.Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerial reipes in C:the art of sienti� omputing. Cambridge: University Press, 1992, 2nd ed., x13.10Torrene, C. & Compo, G. P. 1998, Bulletin of the Amerian Meteorologial Soiety, vol. 79, Issue1, pp.61-78, 79, 61
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