
WaveletsE. Rosolowsky1. Basi
 Signal Pro
essingA large se
tion of astrophysi
s is dedi
ated to rigorous analysis of astrophysi
al signals. Signalpro
essing represents the full array of te
hniques that are used to extra
t meaningful results fromteles
ope data that are often of highly dubious quality. This se
tion of the 
ourse will fo
us onsignal extra
tion, �ltering and 
ompression using wavelets. Wavelets are an in
reasingly popularset of fun
tions that are used in a fashion quite similar to the Fourier transform. However, be
auseof the di�eren
es between the fun
tions used, wavelets have strengths in areas that the Fouriertransform does not.The Fourier transform is an ex
ellent and well-used signal pro
essing te
hnique. As an example,it is ideal for �nding periodi
 signals in very noisy data (like pulsar data). E�e
tively, the signalis moved from the time domain, where the power in the signal is s
attered throughout the timesample, to the frequen
y domain where all the power in the signal is 
on
entrated at one or a fewfrequen
ies. This makes it relatively easy to identify the signal. This represents signal extra
tion.To �lter the data, we'd make the assumption that all the frequen
ies that don't have obvious signalare just the result of noise and set those to zero. With an inverse Fourier transform, the signal,with the zeroed out frequen
ies 
an be moved ba
k into the time domain where the periodi
 signalwill magi
ally appear and be noise free. Finally, signal 
ompression: if the signal is representedby only a few frequen
ies, then we 
ould adequately represent the signal with just a few Fourier
omponents, drasti
ally redu
ing the amount of data required to represent the signal. In 
ontrast,Fourier transforms are less adept at �nding isolated signals, and wavelets 
an be used to bettere�e
t in this situation. 1.1. The Need for Signi�
an
e TestsAll this requires some 
aution. As a noteworthy example, 
onsider a time signal of pure noise,normally distributed. The Fourier transform of su
h a signal is plotted in Figure 1. We impose a�lter around the frequen
ies �20 (Æt�1) of a Gaussian shape whi
h is indi
ated by the thi
k grayline. The resulting inverse Fourier transform shows a \signal" with a frequen
y 
orresponding tothe �lter. This illustrates that re
kless �ltering 
an 
reate the impression of a signal in the data.White light interferometry relies upon this prin
ipal, but in this 
ase, we have extra
ted a signalthat is meaningless. Note, however, the amplitude of the signal, whi
h is signi�
antly smaller thanoriginal signal. This is be
ause we have �ltered out most of the power in the original signal, whi
ho

urred at other frequen
ies.
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Fig. 1.| The left panel is the Fourier transform of a random signal 
hara
terized by a varian
e�2 = 1 with a Gaussian �lter overplotted. The right panel is the inverse transform of the �ltereddata. The result shows a \signal" arising from noisy data.The purpose of this example is to illustrate the need for a tool to measure the signi�
an
eof �ltering produ
ts. You might imagine that it's possible to determine when signal in a Fouriertransform is signi�
ant in a signal with normally distributed noise. You'd be right. For now, justnote that whatever tools we develop, we'll need a way to determine the signi�
an
e of the transformprodu
ts. 1.2. Why develop wavelets?The Fourier transform is really useful for �nding periodi
 signals in data. This is be
ause theFourier transform is rooted in periodi
 fun
tions: sines and 
osines. The transform integral lookslike this: F (!) / Z 1�1 f(t) 
os(!t)dtSpeaking in a sloppy fashion, the value of F (!) is large when the fun
tion f(t) is similar to 
os(!t)and small when it is not. This sort of reasoning shows up repeatedly throughout what follows.Thus, a signal that has an angular frequen
y ! will have large values be
ause the fun
tion 
os(!t)is well mat
hed to its shape. For non-periodi
 fun
tions, we might suspe
t the Fourier transformmight not be quite as su

essful. So, let's 
onsider the fun
tion g(t) = sin(t2). Figure 2 shows thegraph of this fun
tion and the power of the 
orresponding Fourier transform.
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Fig. 2.| The left panel plots the fun
tion g(t) = sin(t2) and the right panel shows the power ofthe Fourier transform, jbg(!)j2.1.3. The Windowed Fourier TransformBy looking at the signal and its transform, you immediately see that there is power at a lotof di�erent frequen
ies. This happens many times in signal pro
essing, but what makes this signalunique is that the frequen
ies appear at spe
i�
 parts of the signal: low frequen
ies appear inthe �rst part and higher frequen
ies appear in the later parts. However, the Fourier transformhas no way of representing this feature; there is no way to tell, from the transform data alone,where in the signal a parti
ular frequen
y is important. One solution is to develop the \windowed"Fourier transform, that is to only look at small sub-regions of the data and examine the frequen
iespresent in that window. Let's 
onsider, a Gaussian weight fun
tion on the signal. Gaussian windowfun
tions eliminate some pathologies asso
iated with sharp edges of the windowing fun
tions. Let's
onsider three windows on our data:w1(t) = exp��2t2�2 �w2(t) = exp��2(t� 2�)2�2 �w3(t) = exp��2(t� 4�)2�2 �These are shown in Figure 3 as the bla
k, thi
k grey and thi
k bla
k envelopes respe
tively (dot-ted lines) and the resulting signals are shown as the solid lines of the same 
olors. The Fouriertransforms of the windowed signals are shown in the bottom panel in 
omparison with the originalsignal. Note that the three windows sele
t individual regions of the frequen
y spa
e, illustratingthe property that we want: time lo
alization of the frequen
y analysis.So, why talk about wavelets. It might surprise you, but we've been dis
ussing wavelets for
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Fig. 3.| The three windowed subse
tions (w1; w2 and w3 as des
ribed in the text) are plotted asdashed 
urves of light bla
k, grey, and heavy bla
k 
urves respe
tively. The resulting windowedsignals are plotted as solid lines of the light bla
k, gray and heavy bla
k respe
tively. The bottompanel shows the Fourier transform of the original signal in thin bla
k and the windowed regions indashed 
urves of solid bla
k, gray and heavy bla
k lines. This shows that the windowed Fouriertransform 
an be used to lo
alize the signal analysis in time.several paragraphs now. The windowed Fourier transform 
an be re
ast in terms of wavelets, witha few slight modi�
ations. Let's examine what happened mathemati
ally. Instead of the original



{ 5 {Fourier equation, we've modi�ed the Fourier transform to look likeF 0(!) / Z 1�1w(t)g(t) 
os(!t)dtwhere w(t) is a weight fun
tion. The form of the weight fun
tion is w(t) = exp(��2=2) with� = (t � b)=a where b is the o�set of the Gaussian and a is the width of the Gaussian. If we setg(t) = 1, we 
an dedu
e what the e�e
t of w(t) has on the basis fun
tions 
os(!t). Be
ause ofour experien
e with Fourier transforms and the 
onvolution theorem in parti
ular, we 
an pro
eedwithout any expli
it 
al
ulation1:F 0(!) = 
W (!0)~ Æ(!0 � !) +
W (!0)~ Æ(!0 + !) = 
W (!) +
W (�!)Here, 
W (!) is the Fourier transform of the Gaussian weight fun
tion, also a Gaussian and thedelta fun
tions arise from the transform of the 
osines. So, what has happened? By restri
tingthe region of analysis in the time domain, we have broadened our frequen
y basis fun
tion, whi
hwas originally a delta-fun
tion, by 
onvolving it with a Gaussian. This is one of the key propertiesof wavelets: they restri
t their attention to areas that are �nite in both the frequen
y and timedomains. In 
ontrast, the Fourier transform impli
itly relies upon an in�nite extent in the timedomain and an in�nitely small region of the frequen
y domain. So, in that sense, the windowedFourier transform is a kind of wavelet analysis. We'll need to make this more rigorous and add insome other restri
tions.Let's 
onsider the example of the fun
tion g(t) = sin(t2) some more. Furthermore, let's
onsider the family of Gaussian weight fun
tions w(t; a; b) = exp(��2=2) with � = (t � b)=a on
eagain. Instead performing analysis for all angular frequen
ies !, let's 
onsider a �xed frequen
y !0and ask the question `Where does the signal have frequen
y !0?' This is a question that waveletanalysis is well suited for answering.To approa
h this problem, we'll just 
al
ulate the Fourier 
osine transform at a single frequen
y!0 = 20 rad s�1 for a variety of a and b in the weight fun
tion. The results of this analysis areshown in Figure 4. The �gure shows that there is a unique width (amax and time o�set bmax forwhi
h the response is maximized and we 
an say, vaguely, that in a width amax around time bmax,the signal looks most like a 
osine wave with frequen
y 20 radians per se
ond.2. The Wavelet TransformThroughout the past se
tion we have used a measure of how similar two fun
tions are to ea
hother: hf(t); g(t)i = Z 1�1 f(t)g�(t)dt (1)1The symbol ~ is used for 
onvolution and � is used for 
omplex 
onjugation
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Fig. 4.| Fourier 
osine transform for g(t) = sin(t2) at !0 = 20 for a variety of a and b values inthe window fun
tion. The maximum value of the transform is marked with a 
ross. The 
ontoursdes
end in in
rements of 20% of the maximum from the maximum. Negative 
ontours are dotted.The 
ross represents range where the signal looks most like a 
osine wave with !0 = 20.The 
omplex 
onjugate (�) is thrown in for 
ompatibility with 
omplex fun
tions. Again, if thefun
tions are similar, the absolute value of hf(t); g(t)i will be large. If they are di�erent, thevalue will be small. Remember, the value is just a real (or maybe 
omplex) number. Examinethe notation: the angle bra
kets are reminis
ent of the notation for an inner (or dot) produ
t inve
tor geometry or bra-ket notation in quantum me
hani
s for a reason. The language of fun
tionalanalysis that is used here draws expli
it parallels between ve
tors in a ve
tor spa
e and and fun
tionsin a \fun
tion spa
e." This integral is a way of expressing the dot produ
t between two fun
tions.Also note in a ve
tor spa
e that the length of a ve
tor is measured by taking the square root of the
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tor dotted with itself: jjf(t)jj2 � hf(t); f(t)i. The same is true here:jjf(t)jj2 = Z 1�1 f(t)f�(t)dt = Z 1�1 jf(t)j2dtThis is 
alled the \L2 norm of fun
tion spa
e." All fun
tions with a �nite value of jjf jj are 
alledL2 fun
tions, and are also known to the rest of the world as \square-integrable." This is importantbe
ause it means the fun
tions are friendly and well behaved. In Quantum Me
hani
s the bra-ketnotation was used to proje
t a blended wave fun
tion onto \basis" states e.g. the states of theH I atom. The bra-ket produ
t hf j i was used to 
al
ulate the amplitude of one basis ve
tor ina mixed state, so this notation is exa
tly the 
ontext in whi
h bra-ket notation was developed inquantum.Returning to wavelets, we'll de�ne the wavelet transform of a fun
tion f with respe
t to awavelet  as hf;  i. In parti
ular, the wavelet is required to be a fun
tion of � = (t� b)=a: (�) =  � t� ba �The wavelet  (�) is referred to as the mother wavelet. In general the wavelet is s
aled to = 1pa � t� ba � (2)so that the L2 norm is the same for all wavelets derived from a given mother wavelet. Su
h a groupis 
alled a wavelet family. So, the full result of the wavelet transform is the inner produ
t betweenthe fun
tion f and the wavelets, with a full range of a and b. We'll de�ne this result as W (a; b)making this the standard notation for a wavelet transform:W (a; b) � hf(t);  (a; b; t)i = Z 1�1 f(t) 1pa �� t� ba � dt (3)The result of the transform, W (a; b) is, as the notation implies, a fun
tion of a and b and theamplitude represents how well mat
hed the wavelet is to the input fun
tion as a fun
tion of a andb. We de�ne the wavelet power as P (a; b) � jW (a; b)j2.At this point, the dis
ussion implies that any L2 fun
tion 
an be a wavelet (like a Gaussian),but we want to impose a further restri
tion. We'll require thatZ 1�1 1pa � t� ba � dt = 0This is, purportedly, why wavelets are so named: they wave above and below the axis so that theirtotal integral is zero. That 
ould just be an old mathemati
ians tale. This is often expressed interms of the \admissibility 
riterion" for wavelets whi
h requires the integralC = Z 1�1 j b (!)j2! d!
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riterion is a little less stringent than the requirement that the wavelet have zero integral but if thewavelet integrates to zero, then b (0) = 0 sin
e there is no total power, and the wavelet will ful�llthe admissibility 
riterion. The reason for this requirement is that it allows the re
onstru
tion of asignal from the results of a wavelet transform. The inverse transform of the wavelet fun
tion isf(t) = 1C Z 1�1 Z 1�1W (a; b) (a; b; t)da dba2 : (4)This looks 
ompli
ated, but rest assured, you will not have to 
al
ulate these expli
itly.Without further ado, let's look at some wavelets! Perhaps the 
losest wavelet to what we'vebeen examining is the Morlet Wavelet after the mathemati
ian that popularized it: Susan Wavelet.The wavelet is de�ned as  (�) = ��1=4 exp(i!0�) exp(��2=2) (5)This is rather familiar! It's just the Gaussian envelope on a 
osine and sine fun
tion. !0 is adimensionless frequen
y. The only di�eren
e between this fun
tion and the one we 
onsidered atthe end of the previous se
tion is that the sines and 
osines are �xed with respe
t to the waveletand not with respe
t to the signal.The Morlet wavelet is 
omplex-valued. In 
ontrast, a family of wavelets that's often used whi
his stri
tly real is the derivative of a Gaussian 
lass of wavelets. They are de�ned as�1p�(m+ 1=2) dd� exp���22 �We'll fo
us on the 
ase where m = 2 so that this equation be
omesr 43� (1� �2) exp���22 �This is often 
alled the Mexi
an Hat Wavelet. Figure 5 plots a Morlet wavelet and two derivativeof Gaussian wavelets (DOG).3. Using Wavelets to Dete
t SignalsYou may have noti
ed that the wavelet transformation moves a perfe
tly good 1-D time seriesinto a 2-D array of power as a fun
tion of s
ale (a) and o�set (b). This seems like a large expansionof an otherwise 
ompa
t dataset and you may have serious doubts about how we'll possibly make itto data 
ompression. We'll get around to this. Here, we'll use illustrate how wavelets 
an be usedto dete
t signals. One 
ommon type of problem in astronomi
al data analysis is �nding a Gaussiansignal in a noisy set of data. Consider the signal in the left-hand panel of Figure 6. Two Gaussianshave been inje
ted into the signal. One has signal-to-noise in one se
ond of 0.8 and a width of 10
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Fig. 5.| The left panel plots a Morlet wavelet with !0 = 6 and the right panel plots two derivativeof Gaussian wavelets (DOG) with m = 2 and m = 6.

Fig. 6.| The left panel plots a test signal with low signal to noise. The signal without noise isplotted with a thi
k gray line. The right panel plots a grays
ale image of the power in the wavelet
oeÆ
ients using a DOG wavelet with a degree of m = 2. The dashed bla
k 
ontours are the 99%
on�den
e limit on the noise produ
ing the wavelet 
oeÆ
ients of amplitude shown. The horizontaldotted lines indi
ate the lo
ations at whi
h the signal is lo
ated.
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entered at 387 s. The other Gaussian has a signal-to-noise of 0.4 in 1 se
ond anda width of 50 s and is 
entered at 721 s.Sin
e the signal is a Gaussian, using a DOG wavelet is a good idea. This sort of reasoning isquite 
ommon with wavelets: the wavelets are 
hosen based on how well mat
hed they are to theexpe
ted signals. (Some people deride this 
hoi
e as arbitrary, but the snipey wavelet reply is justto say that the 
hoi
e of a Fourier basis or a Legendre basis is equally arbitrary.) We use a waveletwith m = 2 and perform a transform for a range of a 2 [0; 200℄ and b 2 [0; 1024℄. This produ
eswavelet 
oeÆ
ients as a fun
tion of a and b. The wavelet power is just the absolute value of the
oeÆ
ients squared (use the modulus squared for 
omplex 
oeÆ
ients). A grays
ale image of thewavelet power is shown in the left-hand panel of Figure 6. The image shows signi�
ant power atthe o�sets (b) 
orresponding to the two signal pulses and the s
ales (a) at whi
h the power peaksshows that the peak at 387 s is narrower than the one at 721 s. Bla
k 
ontours indi
ate the 99%
on�den
e interval in the signi�
an
e of our signal dete
tion.How are we determining whether the power in the wavelet 
oeÆ
ients is \signi�
ant?" Wea

omplish this by determining the response of the wavelet transform to a random signal, n(t).Then, sin
e the wavelet transform is a linear transform2 , we 
an break up an input signal f(t) intosignal 
omponents s(t) and noise 
omponents n(t):f(t) = s(t) + n(t). If the wavelet transform ofthe 
omposite signal shows a response larger than we'd expe
t for a random signal, we'll suspe
ttrue signal at the s
ale and o�set where the ex
ess o

urs. Before we get to a
tually evaluatingthe response of the Wavelet transform to noise, we need to make a few statements about how thetransform is a
tually 
al
ulated.3.1. Implementing the Continuous Wavelet TransformAs written, the wavelet transform involves a lot of 
al
ulation and you might suspe
t that alot of it is redundant. You'd be right. Again. To speed things up, the �rst thing to look at in thewavelet transform is to view the transform as a 
onvolution with b as the lag parameter. And whenwe hear 
onvolution we think Fourier Transforms! If we regard a as �xed, then we 
an write downthe inner produ
t of the fun
tions in terms of b:W (a; b) = Z 1�1 f(t) 1pa �� t� ba � dtSo, if we take the Fourier transform of this equation, we get
W (!a; !b) = pa bf(!)
 �(a!)2In the sense that the transform of a sum is the sum of the transforms, and the transform of the produ
t of as
alar and a fun
tion equals the s
alar times the transformed fun
tion.
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h is just the 
onvolution theorem of Fourier transform wrapped up with the s
aling theoremwhi
h says  � ta�() a b (a!)The notation() indi
ates the two fun
tions are a Fourier transform pair. Note that the evaluationof the wavelet transform is parti
ularly easy if you know the expli
it form of the wavelet's Fouriertransform. Then, for ea
h s
ale, the wavelet 
oeÆ
ients 
an be 
al
ulated by simply evaluatingthe transformed wavelet in the frequen
y domain, multiplying by the transformed data to do the
onvolution, and inverse transforming. The Fourier transforms of the two wavelets we've mentionedabove are:Morlet: �1=4H(!) exp �(a! � !0)22 � DOG: �imp�(m+ 1=2) (a!)m exp ��(a!)22 �Here, H(!) is the Heaviside step fun
tion whi
h has H(!) = 0 for ! < 0 and 1 otherwise.Hen
e, a qui
k algorithm for implementing the 
ontinuous wavelet transform in the 
ase wherethe Fourier transform 
an be expli
itly evaluated is1. Fourier transform the data.2. For ea
h s
ale a, multiply the s
aled transform of the mother wavelet times the transformeddata. See x3.3 for a dis
ussion of what s
ales need to be sampled.3. Transform ea
h s
ale ba
k.3.2. The Noise Response of the Wavelet TransformTo determine the response of a wavelet transform to signal, we 
onsider the power in thewavelet transform, P = jW (a; b)j2, for a random input signal n(t).However, as pointed out in the previous se
tion (whi
h is why it is where it is), the wavelettransform 
an be thought of as a 
onvolution between a wavelet of s
ale a and a fun
tion as afun
tion of lag parameter b. Then,E(P ) = E �jn(t)~  �(a; b; t)j2�However, the expe
tation value of this fun
tion 
an be Fourier transformed to split up the 
onvo-lution:E �jn(t)~  �(a; b; t)j2� = E �Z 1�1 jn(!)j2j (a; b; !)j2d!� = Z 1�1 E(jbn(!)j2)j b (a; b; !)j2d! (6)



{ 12 {The �rst equality holds by transforming into the Fourier domain and following the proof of thePower theorem (Parseval's Theorem).jn(t)~  �(a; b; t)j2 = [n(t)~  �(a; b; t)℄ [n(t)~  �(a; b; t)℄�= Z 1�1 bn(!) b �(!) exp(�i!t)d! Z 1�1 bn�(!0) b (!0) exp(i!0t)d!0= Z 1�1 Z 1�1 bn(!0)�bn(!) b (!0) b (!)� exp �i(! � !0)t� d! d!0= Z 1�1 jbn(!)j2j b (!)j2d!Returning to the last equality in Equation 6, the expe
tation value has been passed into the integralwhi
h 
an be done for random signals. The expe
tation value of a known wavelet fun
tion is equalto the fun
tion (just like the expe
tation value of 3 in many realizations of 3 is 3). The expe
tationvalue for a random signal is determined by 
hara
terized by its varian
e �2 so Equation 6 be
omesE (P ) = Z 1�1 E(jbn(!)j2)j b (a; b; !)j2d! = Z 1�1 �2j b (a; b; !)j2d! = �2 (7)So, we have shown that the expe
tation value of wavelet power is equal to the varian
e of a randomsignal. The wavelet transform preserves the varian
e of the noise in the resulting 
oeÆ
ients. Wewould like to know not just the expe
tation values but the distribution of the wavelet 
oeÆ
ientsand the wavelet power. This is not easy to demonstrate, however, in a statement without proof, thewavelet 
oeÆ
ients for a pure noise signal are distributed a

ording to a normal distribution withvarian
e �2 for all a and b. This means that the wavelet power is distributed as a �2 distributionwith 1 Degree of Freedom if the wavelet is real and 2 DOF if the wavelet is 
omplex. This is be
ausea random set of 
omplex numbers has a normal distribution of varian
e �2 in the real plane andthe same in the 
omplex plane. In other words, the PDF, � of the wavelet power P is:�(P ) = �2�Pk�2 ; k�where k = 1 for real wavelets and k = 2 for 
omplex wavelets and �2 is the expe
tation value ofthe noise varian
e. Thus, using the �2 
umulative distribution, we 
an 
hoose a probability 
uto�and require the wavelet power asso
iated with a signal to be greater than this level to be \real." InFigure 6, we looked for what level of wavelet power would be generated by random noise only 1%of the time. Using the CHISQR CVF fun
tion in IDL with arguments of 0.01 for the 1% 
on�den
einterval and 1 for the degrees of freedom (the DOG is a real wavelet). Then, we put in a 
ontourat this 99% 
on�den
e interval showing there is signi�
ant power around where the Gaussian inputsignals are lo
ated, as in Figure 6.3.3. Redundant InformationAs we've noted before, the 
ontinuous wavelet transform 
ontains a lot of redundant informa-tion. In the next se
tion, we will begin dis
ussion the dis
rete wavelet transform. Like the Fourier
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urately reprodu
e a signal.In parti
ular, we are 
on
erned with how many s
ales (a) and o�sets (b) are needed to obtain a
omplete pi
ture of the wavelet transform.The �rst thing we 
ould do to minimize redundan
y is to eliminate a large amount of the s
aleinformation. To 
apture all the information using wavelet transforms, a signal must be sampled ats
ales spa
ed logarithmi
ally with a maximum spa
ing set by the wavelet being used. In general,if the s
ales are spa
ed by s
ales that in
rease by a fa
tor of p2, all s
ales will be well sampled forall wavelets. Thus, the s
ales that should be sampled are aj = a0 � 2j=2, all the information shouldbe retained. Here, a0 is some minimum s
ale of the data under examination.The reason for this logarithmi
 stepping in s
ale is that for al � am, the wavelet �lters aresmoothing on very similar s
ales and the di�eren
e is quite small. This redundan
y 
an be quanti�edwith the inner produ
t between the two wavelet fun
tionsh (al; bk = 0);  (am; bk = 0)i = Z 1�1  (al; bk = 0; t) �(am; bks = 0; t)dtFor al = am this integral equals 1 (be
ause of wavelet normalization) and falls o� from 1 as am
hanges. This behavior is shown in Figure 7. The integral is often 
alled the overlap integraland represents how similar the wavelet fun
tions are, whi
h in turn indi
ates how redundant theinformation is for the transforms with the two di�erent �lters. Sin
e the overlap drops o� as afun
tion of the logarithm of the s
ale parameter, logarithmi
 sampling of s
ales is adequate forre
onstru
tion.In a similar fashion, for a �xed s
ale a0 the spa
ings of b are redundant for very small steps ofb 
ompared to how fast the wavelet os
illates. This is be
ause the wavelet smoothes the data onthese s
ales and the sampling is redundant. To parameterize how \fast the wavelet os
illates," we
al
ulate the Fourier equivalent frequen
y of the wavelet, whi
h is de�ned as the maximum valueof the Fourier power of the wavelet: !eq � max j b (!)j2. This is a sensible de�nition be
ause it
hara
terizes a wavelet by the dominant frequen
y of its os
illatory 
omponents. This de�nes theFourier wavelength of the wavelet by �f � 2�=!eq. For the Morlet and DOG wavelets, the Fourierwavelengths are �Mor = 4�a!0 +p2 + !20 and �DOG = 2�apm+ 1=2On s
ales signi�
antly smaller the �f , the data are redundant sin
e the wavelet smoothes over theses
ales. A wavelet should be sampled with Æb = �f=2, whi
h is the analogue of the Nyquist 
riterion.The spa
ings of these points indi
ate that many values of b must be sampled for small values of a,but for large values of a, only a few values of b are needed for all information.
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Fig. 7.| The overlap integral, h (al; b = 0);  (am; b = 0)i, for a DOG wavelet with m = 2. Thes
ale al is �xed at the value indi
ated by the solid verti
al line. The dashed verti
al lines indi
ateam = al=2 and am = 2al where the overlap has fallen o� signi�
antly.4. The Dis
rete Wavelet TransformAs noted previously, 
ontinuous wavelets take a 1-D signal and make it into a 2-D representationin wavelet spa
e. This 
learly introdu
es a lot of redundant information. In addition, most signalsthat we are exploring are dis
retely sampled, as is the 
ase with real time series. At this point,we will 
hange methodologies to explore the Dis
rete Wavelet Transform. Unlike most fun
tionalanalysis where the dis
rete analysis is just an approximation, Dis
rete Wavelet transforms a
tuallyhave more utility than the Continuous variety. To begin with, everything will look like the naturalgeneralization of the 
ontinuous, mathemati
ally grounded transforms that we've been dis
ussing.As we progress, we'll move father away from this treatment.Begin with a ve
tor of data xi. We'll assume that the data are well gridded, that is to sayspa
ed by a uniform time interval Æt. We'll start by 
onsidering 
ontinuous wavelets with 
losedform expressions, i.e. the wavelets we've been using. In this 
ase, the wavelet 
oeÆ
ients aresampled on a grid of a and b values, with b being spa
ed every Æt. ThenW (aj ; bkÆt) = N�1Xn=0 xn 1paj  ��(n� bk)Ætaj � : (8)Sin
e our 
lass is fo
using on IDL, we'll adopt the Fourier transform 
onventions of IDL to



{ 15 {make this easy to implement. Other languages would use their own 
onventions.
xp = 1N N�1Xn=0 xn exp��2�inpN �Then, the Dis
rete Fourier Transform 
an be used with the 
onvolution theorem for a fast 
al
ulationof the 
oeÆ
ients. W (aj; bk) = N�1Xp=0 
xppaj
 � (aj!p) exp (i!pbkÆt) (9)Here, !p is the ve
tor 
orresponding to the frequen
ies sampled in the Dis
rete Fourier trans-form of x, namely !p = 2�p=NÆt for p � N=2 and !p = 2�(p�N)=NÆt for p > N=2.The normalization to keep the wavelet at 
onstant power for all values of the s
ale aj is �(n� bk)Ætaj � =s Ætaj 0�(n� bk)Ætaj �where  0 is the mother wavelet.4.1. Re
onstru
tion Using Dis
rete WaveletsLike the Fourier transform, the wavelet 
oeÆ
ients W (aj; bk) 
an be used to re
onstru
t asignal from the 
onstituent parts. However, sin
e the wavelet transform is 
onvolving the signal atsome �xed minimum s
ale a0, detail on levels smaller than a0 will be lost. Even when sampled withminimum redundan
y, the wavelet transform still 
ontains more information than the original signal.As su
h, the inverse wavelet transform 
an a
tually rely upon a di�erent fun
tion to re
onstru
tthe data. The basi
 pro
ess involves re
onstru
ting using the inverse transform (Equation 4) witha simpler fun
tion and a fun
tion that 
orre
ts for the di�eren
e between the original wavelet andthe re
onstru
tion fun
tion. This is a blatant statement without proof sin
e the details are irksome(but available in Farge's 1992 arti
le in the Annual Review of Fluid Me
hani
s). The utility ofdelving into this is that a mu
h simpler fun
tion 
an be used to re
onstru
t the original signal, likethe delta fun
tion. In the spe
ial 
ase that the s
ales are 
hosen logarithmi
ally, with a fa
tor of2Æj between ea
h level, the data 
an be re
onstru
ted with:xk = Æj(Æt)1=2C0 0(0) JmaxXj=0 Re fW (aj ; bk)gpaj ;where C0 is a s
aling 
onstant that depends on the wavelet and  0(0) is the amplitude of the motherwavelet at bk = 0. The Re operator indi
ates that the real part of the expression should be used.Note that in this re
onstru
tion formula, the signal at any point is just a sum over the di�erents
ales that give rise to it.



{ 16 {Given the possibility of re
onstru
tion, a wavelet de
omposition seems to present the opportu-nity to �lter the data. In short, a �lter would 
onsist of setting the power at a given s
ale to zero,thereby eliminating that s
ale from the re
onstru
tion. In Fourier �ltering, this is a

omplished bysetting unwanted frequen
y 
omponents to zero. One problem immediately 
rops up: unlike theFourier basis fun
tions, the wavelets that we have been using are non-orthogonal whi
h preventsre
onstru
tion. This means that the wavelets 
oeÆ
ients on di�erent s
ales 
ontain redundantinformation that, when summed into a re
onstru
tion, interferes in pre
isely the 
orre
t fashion toreturn the original signal. If a s
ale is blindly set to zero, wavelets at di�erent s
ales may 
ontributeerroneous power in the re
onstru
tion. The solution to this problem is to 
onstru
t wavelets thatare orthogonal, so that a single wavelet 
oeÆ
ient represents the total power of a given stru
ture ata �xed s
ale. This proves to be diÆ
ult with the wavelets we are dealing with. There are no 
losedform expressions for 
ontinuous wavelets that are orthogonal for all a and b. Through judi
ioussele
tion of a set of a grid of aj and bk, orthogonal wavelets 
an be 
onstru
ted. This is reminis
entof a dis
rete wavelet transform; and indeed, we must operate in the dis
rete wavelet transform inorder to make any progress. 5. Orthogonal WaveletsIn the 
ontinuous 
ase, the statement of orthogonality of wavelets is justh (ai; bi; x);  (aj ; bj ; x)i = Æ(ai � aj ; bi � bj)In the dis
rete 
ase, the inner produ
t between two fun
tions ishf(xk); g(xk)i = N�1Xk=0 f(xk)g�(xk):This is just the analog of Equation 1 realized in the dis
rete 
ase. Everything we said about the be-havior of the inner produ
t there should hold in the dis
rete 
ase. A similar de�nition of orthogonal-ity to the 
ontinuous 
ase follows for the dis
rete 
ase with h (ai; bi; xk);  (aj ; bj ; xk)i = Æai ;ajÆbi;bj :To illustrate the utility of orthogonal wavelets with respe
t to �ltering, we 
an draw a parallelwith ve
tor spa
es. In an orthogonal basis of a ve
tor spa
e, the dot produ
t between two di�erentbasis ve
tors is zero. A ve
tor is 
onstru
ted as the sum of the proje
tions onto the basis ve
torstimes the basis ve
tors. For dis
rete fun
tions with an orthogonal basis, the proje
tion onto theith basis fun
tion is just hf;  (ai; bi)i and the fun
tion is re
onstru
ted mu
h more simply than thenon-orthogonal 
ase: f =Pijhf;  (ai; bj)i (ai; bj). (On
e again, this sum may look quite familiarif we re-write the inner produ
t in the notation of quantum me
hani
s: jfi = Pij j ijih ij jfi.)There is be
ause there is no interferen
e between terms in this sum be
ause the overlap integrals(sums) between the orthogonal fun
tions are zero (this is the de�nition of orthogonal). Filteringis a

omplished by dropping \unwanted" terms from the sum and re
onstru
ting. Sin
e the basisfun
tions are orthogonal, there is no ex
ess information added in. This is highly analogous toFourier �ltering.



{ 17 {It remains to 
onstru
t an orthogonal wavelet. So far, we've made no assumptions of 
ontinuityor di�erentiability, though all our wavelets have been smooth so far. The simplest orthogonalwavelets are not 
ontinuous. We shall begin our dis
ussion with the Haar wavelet whi
h is adis
ontinuous, orthogonal wavelet. The mother wavelet is de�ned on the interval between 0 and 1as  0(�) = ( 1; 0 � � < 1=2�1; 1=2 � � < 1:The wavelet is well normalized in that R1�1  0(�)d� = 0 and R1�1 j 0(�)j2d� = 1. The left-hand panel of Figure 8 plots the wavelet. The right-hand panel shows how the Haar wavelet is\interpolated" onto a �xed grid of points for the Dis
rete Wavelet Transform. The sampling of thefun
tion at the �s is quite easy in this 
ase!

Fig. 8.| The Haar wavelet. The left-hand panel plots the wavelet as it is de�ned and the right-handpanel shows the ease of sampling the wavelet at dis
rete points, marked by �s.This wavelet is orthogonal to other Haar wavelets provided that for � = (t� b)=a, a = 2�k forsome integer value of k and b=a � 
 is also an integer. The negative sign on k is just for the sakeof notation later. For the mother wavelet 
ase (i.e. a = 1) b must be an integer, so other Haarwavelets at this s
ale are just the mother wavelet translated by integer values so that the waveletsdon't overlap. In this 
ase, the produ
t of one wavelet by another is identi
ally zero for all valuesof t, showing these are orthogonal. For di�erent s
ales, let's examine the inner produ
t of  0 with



{ 18 {the wavelet that has k = 1 and 
 = 1 whi
h has the form 1;1(t) = p2( 1; 1=2 � t < 3=4�1; 3=4 � t < 1:We have used the notation  k;
 to denote this wavelet where k and 
 are integers determining thes
ale and o�set respe
tively. The inner produ
t of this with the mother wavelet ( 0;0) is just the�1 (from  0;0) times the integral of  1;1 over the range [1/2,1) whi
h is zero by inspe
tion. For allvalues of k and 
 that are integers, the wavelets will be orthogonal. This example may be aided bystudying some examples of the Haar wavelet for di�erent values of k and 
 whi
h appears in Figure9.
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ψ ψ ψFig. 9.| Examples of the Haar wavelet for di�erent values of k and 
. For larger k, the wavelet isnarrower and taller. For larger values of 
, the wavelet moves from 0 to 1. The wavelet  2;3 is notshown but is ne
essary to 
omplete the set of  2;
.De
omposition onto this basis is a

omplished using the methods outlined above. That is to



{ 19 {say, we just take the inner produ
t of the fun
tion with ea
h of the wavelets in our in�nite basis.Restri
ting to the interval [0; 1), any fun
tion with zero mean 
an be represented on this interval asf(t) = 1Xk=0 2k�1X
=0 wk;
hf(t);  k;
(t)i= w0;0 Z 10 f(t) 0;0dt+ w1;0 Z 10 f(t) 1;0dt+ w1;1 Z 10 f(t) 1;1dt+ w2;0 Z 10 f(t) 2;0dt+ w2;1 Z 10 f(t) 2;1dt+ w2;2 Z 10 f(t) 2;2dt+ w2;3 Z 10 f(t) 2;3dt+ 1Xk=3 2k�1X
=0 wk;
 Z 10 f(t) k;
dt:Sin
e all the basis fun
tion have zero mean, there is no way that their linear 
ombination 
anhave a non-zero mean. To represent any given fun
tion, we need to add in an o�set equal to theintegral of the fun
tion a
ross the interval under 
onsideration, whi
h 
an be thought of as theinner produ
t of the fun
tion with a s
aling fun
tion � whi
h is equal to 1 over the unit interval:hf(t); �(t)i = hf(t); 1i. For other wavelets, the s
aling fun
tion is di�erent. The reason for thisis that the wavelet and its s
aling fun
tion form a pair su
h that one 
an be derived from theother. Thus a parti
ular wavelet will have a s
aling fun
tion determined by that wavelet. We won'tarti
ulate the pre
ise relationship here, but we will point out where the s
aling fun
tion o

urs inthe most useful 
ases.So, now we know how to represent an arbitrary fun
tion as the sum of Haar wavelets. Let'sapply this method to sample data. Using some 
lever matrix manipulations, we'll be able to vastlyspeed up the 
al
ulation of wavelet 
oeÆ
ients without having to resort to Fourier transforms.This results in the Fast Wavelet Transform whi
h (when done right) is even FASTER than theFast Fourier Transform. Like the FFT, let's assume we have 2N data that we're transforming.Let's asso
iate these data with the unit interval [0,1) so that ea
h datum represents a step of 2�Nalong this interval. We will need to 
onsider a total of N s
ales with 2(N�1) wavelets at ea
h s
ale.This means there will be a total of 2N wavelet 
oeÆ
ients. Immediately, this suggests that theredundan
y we had seen in the previous 
ases is gone. Let's store the wavelet 
oeÆ
ients in a ve
torwith the �rst element being the s
aling 
oeÆ
ient s0 = hf(t); �i. Then, the wavelet transform 
an



{ 20 {be represented as a matrix multipli
ation266666666664
s0w0;0w1;0w1;1w2;0w2;1...

377777777775 = 266666666664
 � � �! �  0;0 �! �  1;0 �! �  1;1 �! �  2;0 �! �  2;1 �!...

377777777775| {z }�	
266666666664
x0x1x2x3x4x5...

377777777775 (10)
This equation is the analog of Equation 8 using a matrix multipli
ation to represent the transform.The matrix 	 is the interpolation of the wavelet fun
tions onto a dis
retely sampled grid. Be
ausethe Haar fun
tions are so simple, the interpolation is relatively easy. In the 
ase of N = 3, thetransform matrix looks like

	 =
26666666666664

1 1 1 1 1 1 1 11 1 1 1 �1 �1 �1 �1p2 p2 �p2 �p2 0 0 0 00 0 0 0 p2 p2 �p2 �p22 �2 0 0 0 0 0 00 0 2 �2 0 0 0 00 0 0 0 2 �2 0 00 0 0 0 0 0 2 �2
37777777777775The values of ea
h row are in
reasing f1;p2; 2; � � � ; 2N=2g be
ause of the normalization 
ondi-tions. Sin
e there are 8 points (N = 3), ea
h point represents 1/8 of the interval between 0 and1. Thus for a matrix with element ai;j in row i and 
olumn j, ea
h row must have (Pi a2i;j)=8 = 1and every row but the �rst has Pi ai;j = 0.Surprisingly, this matrix is a
tually an orthogonal matrix so that its transpose is its inverse.Thus, the inverse wavelet transform 
an be a

omplished by multiplying the ve
tor of wavelet
oeÆ
ients w by the inverse matrix: x = 	TwMaybe this isn't so surprising sin
e ea
h row of the matrix is an orthogonal ve
tor to all the otherrows be
ause of the way it was 
onstru
ted.5.1. Implementation of the Haar Wavelet TransformWhat makes orthogonal wavelet transforms qui
k to implement is the re
ognition that thetransform matrix 	 
an be broken down into a series of matrix multipli
ations that are themselves



{ 21 {very qui
k to implement 
omputationally. There are two steps for ea
h s
ale 
onsidered and thus,in this simple implementation, there are 2N matrix multipli
ations. The method works from thesmallest s
ales to the largest s
ales. At ea
h s
ale you multiply the data ve
tor by a 
onvolutionmatrix and a permutation matrix.For the Haar wavelet, the 
onvolution matrix looks like this:
C0 = 1p2

266666666664
1 11 �1 1 11 �1 1 11 �1 . . .

377777777775When this matrix operates on a data ve
tor, the �rst row of ea
h blo
k smoothes the two elementstogether, so this is 
alled a smoothing row and the resulting s
alar is 
alled a smooth 
omponent.The se
ond row re
ords the di�eren
e between ea
h pair of elements, and is 
alled 
alled the detailrow and the resulting s
alars are 
alled the detail 
omponents. The resulting ve
tor 
ontains thesmooth and detail 
omponents interleaved. The permutation matrix operates to move all thesmooth 
omponents into the �rst part of the array and the detail 
omponents in the latter half ofthe array. While this is best a

omplished numeri
ally by manipulation of the ve
tor indi
es, forthe sake of 
ompleteness, the permutation matrix has the form
P0 = 2666666666664

1 0 0 � � �0 0 1 0 � � �0 0 0 0 1 0 � � �...0 1 0 0 � � �0 0 0 1 0 � � �...
3777777777775If our array is 0 indexed (e.g. as in IDL), this puts the 0th, 2nd, 4th ... elements in the 0th, 1st,2nd, ... elements of the new array and 1st, 3rd, 5th, et
. elements into the (2N=2)th, (2N=2 + 1)th,et
. elements of the new array. The pro
ess is then repeated with 
onvolution matrix C1 andpermutation P1 whi
h operate only on the �rst half (smooth 
omponents) of the resulting ve
tor.



{ 22 {Thus, C1 has the following stru
ture.
C1 = 2666666664 1p2 26666664 1 11 �1 1 11 �1 . . .

37777775 00 I2N=2
3777777775and the permutation matrix similarly splits into blo
ks of size 2N=2. I2N=2 is the identity matrixwith size N=2 �N=2.This pro
ess is iterated N times so thatw = PN�1CN�1PN�2CN�2 � � �C1P0C0| {z }	 xAs indi
ated by the bra
e, the produ
t of all the matri
es gives the wavelet matrix. This suggestshow to build the matrix in the dis
rete wavelet transform from simple matri
es. However, theresults of su
h an operation may be far from intuitive. It helps to view the pro
ess step by step.At ea
h level, operation by the matrix C produ
es smooth 
omponents of the data alternatingwith detail 
omponents of the data. The matrix P separates them and the pro
ess is repeated onthe smooth 
omponent. In what follows, the smoothed 
omponents are given by s's with the dataafter the �rst smoothing being si and the data after the se
ond smoothing being Si, and the detail
omponents given values with d's { di after the �rst detail 
onvolution and Di after the se
onddetail 
onvolution. Then, the whole pro
ess 
an be viewed s
hemati
ally as:26666666666664

y1y2y3y4y5y6y7y8
37777777777775 Convolve�!

26666666666664
s1d1s2d2s3d3s4d4

37777777777775 Permute�!
26666666666664
s1s2s3s4d1d2d3d4

37777777777775 Convolve�!
26666666666664
S1D1S2D2d1d2d3d4

37777777777775 Permute�!
26666666666664
S1S2D1D2d1d2d3d4

37777777777775 (11)
This gives a sense of what data end up where after this kind of Dis
rete Wavelet Transform.Unfortunately, we've repla
ed a matrix multiply of a 2N � 2N matrix by a ve
tor of length2N with 2N su
h matrix multiplies. Given that the original state wasn't so hot, the later stateseems to have only exa
erbated the problem. Fortunately, this is a
tually the path of su

ess.The general 
lass of operations des
ribed in the P and C matri
es are very fast to implement on
omputers. However, it is rather tri
ky. This pro
ess is laid out in Numeri
al Re
ipes; and if youstudy it 
arefully (x13.10), you will note that the partial wavelet transform (one 
onvolution and



{ 23 {one permutation) is a
tually implemented by doing bit shifting operations on the indi
es of thearray. This 
an 
ause heada
hes. However, when implemented in this supremely 
lever fashion,the wavelet 
oeÆ
ients 
an be 
al
ulated in O(n) steps as opposed to the fast Fourier transformwhi
h requires O(n logn) steps. The reason why this is important is not be
ause you need to reallyunderstand what's going on with the guts of the fast wavelet transform, but rather if you try toread Numeri
al Re
ipes you'll understand why things look so spooky.5.2. Filtering with the DWTFiltering is straight forward from this point. As mentioned previously, with an orthogonalbasis, you 
an �lter by setting the wavelet 
oeÆ
ients of unimportant s
ales to zero or signi�
antlyredu
ing them. An example of this �ltering is shown in Figure 10. We return to our noisy dataset with two Gaussians inje
ted (Figure 6) . The data ve
tor is 210 elements long so we apply thepartial wavelet transform 10 times, in redu
ing the ve
tor to wavelet 
oeÆ
ients. These 
oeÆ
ientsare plotted in the left-hand panel of Figure 10. We set all 
oeÆ
ients with wavelet amplitude lessthan 3� to 0 and perform the inverse transform. The �ltered data set appears in the right-handpanel of Figure 10. Instead of the Haar wavelet, this wavelet transform uses the Coi
et wavelet
oeÆ
ients of degree 3 sin
e they produ
e wavelets that are smoother and shaped more like aGaussian. A Coi
et wavelet of degree 3 appears in Figure 11. See x5.3 for more dis
ussion abouthow to a
tually implement the Coi
et wavelet.

Fig. 10.| The left panel plots wavelet 
oeÆ
ients of a simulated signal using the Coi
et dis
retewavelet transform of degree 3. The lines indi
ate the 
lipping levels used in the data. The right-hand panel plots the original test signal in bla
k, the true signal in red and the re
onstru
ted signalin blue.
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Fig. 11.| Wavelet Examples. The left-hand panel shows a Coi
et wavelet of degree 3 used in the�ltering of Figure 10. The right-hand panel shows a Daube
hies wavelet with 4 
oeÆ
ients (seex5.3). 5.3. Other Wavelets FamiliesThe Haar wavelet is the simplest wavelet to be implemented in this fashion. Many otherwavelet families are produ
ed by using di�erent entries in the 
onvolution matrix. These familiesare signi�
antly better at analyzing smooth signals but we negle
ted them for the sake of simpli
ity.One of the most 
ommonly seen wavelets is the Daube
hies wavelet with 4 
oeÆ
ients:C0 = 26666664 
0 
1 
2 
3
3 �
2 
1 �
0
0 
1 
2 
3
3 �
2 
1 �
0 . . .
37777775The 
onstants 
i are given by
0 = (1 +p3)=4p2; 
1 = (3 +p3)=4p2; 
2 = (3�p3)=4p2; and 
3 = (1�p3)=4p2This pe
uliar set of numbers is the solution to the equations
20 + 
21 + 
22 + 
23 = 1 and 
2
0 + 
3
1 = 0whi
h are required for orthogonality of the matrix, and the numbers also have two moments whi
hvanish: 
3 � 
2 + 
1 � 
0 = 0 and 0
3 � 1
2 + 2
2 � 3
0 = 0:



{ 25 {The �rst equation is the zeroth moment of the wavelet 
oeÆ
ients (whi
h 
orresponds to the se
ondrow of the matrix, see below). The se
ond equation is the �rst moment, with ea
h wavelet 
oeÆ
ientmultiplied by its position in the sum. The se
ond moment would just have the position in the sumsquared multiplied by ea
h 
oeÆ
ient and so on. The number of vanishing moments is intrinsi
allyrelated to how smooth the resulting wavelet is. This wavelet, sin
e it has 4 
oeÆ
ients is 
alled theDaube
hies 4 wavelet. You might wonder what this wavelet looks like.It's fairly straight forward to produ
e a wavelet simply by putting 1 in the appropriate positionin the wavelet 
oeÆ
ient matrix and inverse transforming. This will produ
e the wavelet 
orre-sponding to that entry in w. The 
orre
t position in the matrix 
orresponds to the �rst \detail"
oeÆ
ient in the �nal wavelet array (the D1 in Equation 11). In general, if there are n wavelet
oeÆ
ients, the 1 should go in the entry of the array that's the next largest power of 2 greater thanor equal to n. For example for the Daube
hies wavelet of order 6, the 8th element should be 1. Todetermine the s
aling fun
tion, the �rst element of the array should be set to 1 before the inversewavelet transform is performed.The Daube
hies 4 wavelet appears in the right-hand panel of Figure 11. A Coi
et wavelet ofdegree 3 (Figure 11, left) has 18 wavelet 
oeÆ
ients. If all you are given is a set of these wavelet
oeÆ
ients, the matrix C0 
an be built up algorithmi
ally. The 
oeÆ
ients are inserted in the �rstrow of C0, beginning in the �rst 
olumn. Then, the next row is �lled with the 
oeÆ
ients in reverseorder with every other 
oeÆ
ient multiplied by �1. The next row is the same as the �rst row, ex
eptit is padded in front by two 
olumns of zeros. The rows are often 
alled the smoothing row (for theoriginal 
oeÆ
ients) and the detail row (for the reversed, modulated 
oeÆ
ients). The zeros areinserted so that the start of the smoothing row always falls on the diagonal. The smoothing rowrepresents the s
aling fun
tion, �, sampled with the smallest possible number of points to retainall the properties of the wavelet and the detail row represents the wavelet, , sampled with thesmallest number of points. This simple algorithm illustrates an informal relationship between thetwo fun
tions, but the a
tual relationship is buried deeper in mathemati
s.6. Higher DimensionsTo this point, we've dealt ex
lusively with wavelets in 1 dimension whi
h is �ne for some simpleanalysis, but astronomy relies upon multidimensional data. There are two ways to generalize ourresults. Returning to the 
ontinuous form of the transform for a moment, it's possible to writedown the inner produ
t metri
 in higher dimensions:hf; gi = ZV f(r)g(r)dVWith this de�nition, everything follows mutatis mutandi (
hanging what needs to be 
hanged) toreprodu
e all the results in the Continuous wavelet transform se
tion. It's also possible to make awavelet that's not isotropi
 and this introdu
es angular dependen
e so that the wavelet 
oeÆ
ients
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lude a fun
tion of angle rather than just s
ale and o�set.To use the DWT, the data will be 
ontained in a p dimensional array with ea
h dimensionhaving a length that is a power of two. The wavelet transform is inherently a one dimensionaloperation. The wavelet transform is simply applied to ea
h dimension su

essively, and the orderdoes not matter! Thus, to transform the 
olumns of a two-dimensional matrix M, instead of justa 
olumn ve
tor, the wavelet transform is justW
 = 	Msin
e matrix multipli
ation operates independently on ea
h of the 
olumns. The resulting wavelet
oeÆ
ients have been subs
ripted with a 
 to indi
ate that the 
olumns have been transformed.Then, the rows of the matrix must be transformed. To bring the matrix 	 to bear on the rows,the resulting matrix W
 needs to be transposed sin
e 	 operates on 
olumns and then transposedba
k. So, the �nal wavelet 
oeÆ
ients W are 
omputed byW = h	 (	M)T iT :If you re
all a property of matrix algebra, (ab)T = bTaT , then this last equation be
omes moreilluminating: W = �	MT	T �T = 	M	T = 	M	�1:This is a diagonalization of matrix M with respe
t to the basis ve
tors in 	, also known as aproje
tion onto the basis ve
tors. With this identi�
ation, the parallel between ve
tor geometryand fun
tional analysis has 
ome full 
ir
le! Also note that it does not matter whether you transformthe rows or the 
olumns �rst, whi
h you 
an 
he
k with the methods used above.Unfortunately, matrix multipli
ation doesn't generalize to higher dimensions, so the matrixmethods in the DWT don't follow easily. Instead, the general strategy is to view a higher dimen-sional array as being 
omprised of a bundle of individual ve
tors of data and to apply the wavelettransform to ea
h one individually. Then the matrix is transposed using the generalized idea oftransposition where the ve
tors along one dimension are permuted into another.6.1. Using the 2-D Dis
rete Wavelet TransformUsing the methods des
ribed above, let's do a 2-D wavelet transform. Starting with a simpleimage whi
h 
onsists of a 2-D Gaussian (Figure 12), we perform a Coi
et transform of order 3, �rstalong the rows and then the 
olumns. The resulting image 
ontains the wavelet 
oeÆ
ients thatrepresent the Gaussian. The power in both domains is the same, mu
h as it is for the 1-D wavelettransform and we 
an 
he
k this for the image thatXi;j M2ij =Xi;j W2ij
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Fig. 12.| The left panel shows an input image of a Gaussian in gray s
ale. Note that the axes of theimage are inverted along the y-axis with respe
t to how we usually write matri
es (but in a

ordan
ewith how we write 
oordinate axes). The middle panel shows the image after wavelet transformingea
h 
olumn in the image. The right-hand panel shows a subse
tion of the transformed image aftertransforming along the rows. The middle and right-hand panels are shown with a logarithmi
 
olorstret
h. Note the information in the image is 
ompa
ted into a small number of wavelet 
oeÆ
ients.In this 
ase, �ltering follows the same pattern as was done for the 1-D 
ase. First, we generatea noisy image of the Gaussian by adding randomly distributed noise with varian
e �2 to every pixelso the peak signal to noise level in the image is 1. The image is then wavelet transformed witha Coi
et of order 3 and wavelet 
oeÆ
ients with an absolute value less than 4� are set to zero.This is be
ause there are 2562 pixels in the image so we expe
t only a few 4� outliers, but many3� outliers. The 
oeÆ
ients are then transformed ba
k to �ltered image. The pro
ess is shown inFigure 13. 7. Image CompressionBa
k at the beginning of this do
ument, I mentioned that wavelets 
ould be used for the
ompression of images. This is be
ause they are good at en
oding rather detailed information in afew elements. Filtering and 
ompression have a lot to do with ea
h other. In the 
ase of �ltering,you want to move to the wavelet domain to in
rease the signi�
an
e of your signal relative to thenoise. In 
ompression, you want to move to the wavelet domain so that you 
an identify the mostimportant 
hara
teristi
s in the image: those that have the most power in the wavelet domain.To 
ompress an image, you just keep some fra
tion of the \important" 
omponents of the image.There are two methods of 
ompression. In both 
ases, the wavelet 
oeÆ
ients are ranked a

ordingto power (the square of the 
oeÆ
ient). In the �rst 
ase, the top n 
oeÆ
ients are retained and theremainder are set to zero. In the se
ond 
ase, the pre
ision of the 
oeÆ
ients is redu
ed (i.e. 
oatingpoint numbers would be redu
ed to integers). Both of whi
h a
hieve a substantial 
ompression of
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Fig. 13.| The left panel shows an input image of a Gaussian in gray s
ale with noise added. TheGaussian is in there! Contours show the shape of the Gaussian with the lowest being 0.1 timesthe peak value. The middle panel shows a subse
tion of the wavelet image indi
ating where theGaussian maps to in the wavelet domain. The right-hand panel shows the image after the �ltering is
omplete with the same 
ontours to indi
ate the original shape of the Gaussian. The small featuresare from noise with enough power to avoid being �ltered.the data.Note that this isn't parti
ular to wavelets. The Fourier transform 
an be used for 
ompressionas well. Some image 
ompression algorithms use the Dis
rete Cosine Transform to extra
t out�ltered information, like the JPEG standard. The JPEG-2000 standard uses wavelets instead. Thedegree of 
ompression is determined by the fra
tion of the wavelets you keep. As an example,Figure 14 shows an image of a distinguished astrophysi
ist. The middle panel shows the imagere
onstru
ted from top 1% of the wavelet 
oeÆ
ients ranked by power and the right-hand panelshows the image re
onstru
ted from 10% of the wavelet 
oeÆ
ients. The quality of re
onstru
tionis signi�
antly better in the latter 
ase and shows that there really isn't mu
h information in Figure14. But you probably knew that anyways...A. Referen
e MaterialFor the sake of 
ompleteness, here are the 
oeÆ
ients for the Coi
et wavelet of order 3 thatwe've been using so mu
h:-0.0037935129, 0.0077825967, 0.023452696, -0.065771911-0.061123388, 0.40517692, 0.79377722, 0.42848349, -0.071799822,-0.082301927, 0.034555029, 0.015880545, -0.0090079761, -0.00257451770.0011175187, 0.00046621695, -7.0983303e-05, -3.4599774e-05
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Fig. 14.| Demonstration of Image 
ompression using the Coi
et wavelet. The left-hand panelshows the original image, the middle panel shows a 
ompression of 100� and the right-hand panelshows a 
ompression of 10�. REFERENCESFarge, M. 1992, Annual Review of Fluid Me
hani
s, 24, 395Graps, A. 1995, \An Introdu
tion to Wavelets" in IEEE Computational S
ien
e and Engineering,vol 2., num. 2.Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numeri
al re
ipes in C:the art of s
ienti�
 
omputing. Cambridge: University Press, 

1992, 2nd ed., x13.10Torren
e, C. & Compo, G. P. 1998, Bulletin of the Ameri
an Meteorologi
al So
iety, vol. 79, Issue1, pp.61-78, 79, 61
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