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Lecture 18  Rotations and Vibrations

Topics

1. Vibrations of Polyatomic Molecules

2. Rotational Motion

3. Ro-vibrational Transitions

References

• Steinfeld, Molecules and Radiation (Dover 1985)

• Townes & Schawlow, Microwave Spectroscopy (Dover 1975)

• Herzberg, “Free Radicals” (Cornell, 1971)

• Herzberg, Molecular Spectra & Molecular Structure II:

  Infrared and Raman Spectra of Polyatomic Molecules

  (van Nostrand 1945)
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1. Vibration of Polyatomic Molecules

Dense gas  !  Cool gas  !  Long wavelengths  !

Observations across spectrum from NIR to cm     !

Rotational and vibrational transitions (not electronic)

• Transitions involve at least a unit change in vibrational 
   quantum number, as in:  (upper) v’" (lower) v’’.

• Many transitions occur since each vibrational level has a

  manifold of rotational transitions, i.e. “band” structure.

 Transitions involve changes in both vibrational and rotational
 quantum numbers: (upper) v’J’ " (lower) v’’J’’, so-called

 “rotational-vibrational” transitions or ro-vibrational or just

  ro-vib transitions.

• There are usually no rules for ro-vib transitions against any 
  change v’" v’’, although the strength decreases with increasing 

  | v’-v’’ |. The change J’ " J’’ is governed by the usual angular 

  momentum selection rules for dipole (or quadrupole) transitions. 
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Vibrational Modes of Polyatomic Molecules

Let N > 2 be the number of nuclei in a polyatomic molecule with

3N degrees of freedom. With 3 for the center-of-mass and 3 for

rotation (or 2 for a linear molecule with two rotational degrees),

there are 3N-6 (or 3N-5) vibrational degrees of freedom, e.g.,

three  for N = 3 and six for N = 4, etc.

We consider the vibrational frequencies as given. Once the 

equilibrium configuration is known, this is a problem in classical 

Lagrangian mechanics.  Of course high vibrational levels are 

subject to anharmonic corrections, as discussed in Lec. 17. 

See Ch. 8 of Seinfeld for a discussion of Lagrangian and more 

elegant methods, with explicit solutions for N = 3 and 4.

The ultimate source of accurate frequencies is spectroscopic

measurements, presumably compiled and up to date at:

http://physics.nist.gov/PhysRefData/MolSpec/index.html

N.B. Vibrational frequencies are in the NIR. Recall that 2 microns

corresponds to 5000 cm-1 or ~ 7500K
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Vibrations of XY2 Molecules, e.g., H2O and C2H

Fig. 25 from Herzberg, Vol. II: Normal vibrations of bent and linear XY2
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Vibrations of Planar XYZ2

Fig. 24 from Herzberg, Vol. II: Normal vibrations of bent and linear XYZ2

X

 

Y

Z          Z

The two panels represent reflections

in the symmetry plane through XY
and # to the plane of the molecule.

In mode 6, nucleus Y moves out of

the plane while the others move into

the plane.

XYZ2 can also have other isomeric forms

N = 4

3N - 6 = 6
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Vibrational Levels of H2

14 vibrational levels of the ground electronic state

 of H2 included in CLOUDY

 (Shaw et al. ApJ, 624, 674, 2005)

1 cm-1 = 1.4883 K

1 eV = 11604 K

S = 0, " = 0 
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Vibrational Levels of the OH Ground State

#Eul (cm-1)

3737.8 cm-1

1 cm-1 = 1.4883K

1 eV = 11604K

X 2$1/2,3/2

S = 1/2, " = 1 

J = 1/2, 3/2 

20,000

10,000

Fig. 32 Herzberg’s “Radicals”
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Ro-vibrational Transition Probabilities

V(R)

R

The transition probability is determined by

the matrix element of the electric dipole

moment, which varies with the inter-nuclear

separation R. Expand µ(R) about the minimum

 in the potential R0 \:

  

! 

µ(R) = µ(R
0
) + " µ (R

0
)(R # R 0 ) + 1

2
" " µ (R

0
)(R # R 0 )

2 +L

Evaluating the matrix element with oscillator wave functions yields: 

! 

v | µ(R0) | v ' "#(v ',  v)                                (pure rotational)

v | $ µ (R0)(R % R 0 ) | v' "#(v',  v ±1)             (rovib fundamental)

v | 1
2

$ $ µ (R0)(R % R 0 )2 | v ' = #(v',  v ± 2)     (rovib first overtone)

1, Ro-vib transition probabilities are determined by the derivatives

    of the dipole moment, and not on the permanent moment.

2. Fundamental ro-vib transitions are much stronger than overtone.

3. Molecules with small permanent dipole moments can

    have large ro-vib transition moments, e.g., CO.
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2.  Rotational Motion

The rotational motion of a molecule is determined by the

moments of inertia and the angular momenta.

– Classically, any object has three orthogonal principal
moments of inertia (diagonals of the inertia tensor)
with corresponding simple expressions for the
rotational energy and angular momentum.

– This carries over directly to quantum mechanics.

– It is customary to classify the rotational properties of
molecules according to the values of the principle
moments of inertia

The principle moments of inertia are usually designated 

Ia, Ib, and Ic in order of increasing magnitude
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Nomenclature for Rotating Molecules

A molecule with rotational symmetry is a symmetric

top, and either  Ic = Ib > Ia or Ic > Ib = Ia :

• prolate symmetric tops (Ic = Ib > Ia)

   example: NH3, linear molecules (Ia = 0)

• oblate symmetric tops (Ic > Ib = Ia )

   example: planar benzene

A molecule with equal moments is a spherical top.

         example: CH4

A molecule with unequal moments  Ic !"Ib !"Ia  is an

asymmetric top, example: H2O

    benzene               methane   water
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Rotational Energy of a Symmetric Top

The next step is to quantize these classical expressions.
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Classically the energy of rotation is

The symmetry axis is z. For an oblate rotor Ix = Iy = Ib, and

since  J2 = Jx
2 + Jy

2 + Jz
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Rotational Energy of Symmetric Tops

The square of the angular momentum
and its projection on the symmetry
axis are good quantum numbers.

NB The projection on a fixed axis is also
conserved; it is usually denoted Mz

and enters into the Zeeman effect.

J

  

! 

J
2

= J(J +1)h
2

 and J
z

= Kh

   J = 0, 1, 2 L    K = 0,1,2 L

  

! 

 E =
h

2

2I
b

J(J +1) +
h

2

2I
c

"
h

2

2I
b

# 

$ 
% 

& 

' 
( K

2
= BJ(J +1) + (C " B)K 2  (oblate)

E =
h

2

2I
b

J(J +1) +
h

2

2I
a

"
h

2

2I
b

# 

$ 
% 

& 

' 
( K

2
= BJ(J +1) + (A " B)K 2  (prolate)

in terms of the rotational constants, A =
h

2

2I
a

,  B =
h

2

2I
b

,  C =
h

2

2I
c

rotating vector diagram



AY216-09 13

Rules of the Game for Symmetric Tops

• J can have any integral value

• As a projection of J, K has (2J+1) values,

                    +J, J-1, … -J+1, -J

• The energy depends on |K|, so there are only

    J+1 distinct values, and the levels start at J = K

• For a prolate top (cigar) A > B: levels increase with K

    For an oblate top (pancake) C < B: levels decrease

    with K -- see the diagram on the next slide

• The simple rotational ladder of a linear molecule is

    recovered for K =0 (slide 27)

For asymmetric tops (all unequal moments): Only J and E are 

conserved. The states are labeled by J and (K-K+) -- conserved

projections in the limit of prolate & oblate symmetric tops .

To be discussed later in connection with the water molecule.
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Energy Levels of a Symmetric Top

Prolate, A > B Oblate, C < B

J

K

Allowed transitions are up and down fixed K ladders.
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Order of Magnitude of the Rotational Energy
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The rotational energy is determined by the moments of inertia,

e.g, for an oblate asymmetric top 

And I ~ ma2 where m is a typical atomic mass and a is a typical

nuclear separation. The order of magnitude of the rotational

energy is, using these constants for a hydride,

h/2% = 1.05 x 10-27 erg s,     m ~  2 x 10-24 g,     a ~ 10-8 cm,

(h/2%)2/2I  ~  5 x10-15 erg ~  3  x 10-3 eV

Converting to Kelvins, this rough estimate gives ~ 40 K for H

and smaller values for heavier atoms. Recall from Lec. 17 that

B(H2) = 85K and B(CO) = 2.77K
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Rotational Transitions – Molecules with a permanent

dipole moment can generate a strong pure rotational

spectrum.

Symmetric molecules like H2, C2, O2, CH4 and C2H2

have weak rotational spectra generated by the electric

quadrupole moment.
For H2, the !J = 2 transitions start at !(2 " 0) = 28 "m.

For a symmetric top, the dipole moment lies along the 

symmetry axis. The radiation field cannot exert a torque 

along this axis, so the selection rule for a pure 

rotational transition is "K = 0 (and "J = ±1). Levels with  

J=K are metastable.

Radiative Transitions

Selection Rules – The general rules apply, albeit in 

new forms dictated by molecular symmetry.
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Observed Rotational Transitions

atmospheric transparency 

Mauna Kea for 1 mm H2O

Schilke, ApJS, 132, 281 2001

607-725 GHz (415-490 µm) line survey of Orion-KL (Kleinman-

Low Nebula) dominated by CO, CS, SO, SO2 and CH3OH.

Note the relatively high transparency in this FIR/submm band

430 µm460 µm

CO(6-5)
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Observed Rotational Transitions

1 GHz slice of the spectrum from the 607-725 GHz line survey 

of Orion-KL (Schilke et al. 2001) centered on the strongest 

line, CO(J=6-5).

For the Odin satellite observations of this spectral region, 

see Olofsson et al. A&A, 476, 791 & 807, 2007  
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A-value for Dipole Radiation From a Simple Rotor   
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The standard atomic formulae are slightly changed: 

AY216-09 20

v’,J’

v’,0’

v’’,J’’

v’’,0 1st level in v’’ band

1st level in v’ band

Convention: lower level has double, upper level has single prime.

The standard dipole transition selection rule, "J = 0, ±1 allows

three possibilities:

      P-transitions: J’=J’’-1,   i.e., 0-1, 1-2, etc.

      Q-transitions  J’=J’’,      i.e., 1-1, 2-2, etc.

                   R-transition:  J’=J’’+1,   i.e., 1-0, 2-1, etc

3. Ro-Vibrational Transitions

emission     v’,J’  $  v’’,J’’
N.B. v’ and v’’ may be

in different electronic

states
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Ro-Vibrational Energies for a Diatomic Molecule

 )1''('''')1'('' )'','()'''',''( vib +!++"=" JJBJJBvvEJvJvE

The energy in a ro-vibrational transition of a diatomic molecule is,

 ignoring the centrifugal terms discussed in Lec. 17 (slide 27),

Keeping !’ and !’’ fixed (and also the first term, denoted E0 below), 
the energy changes for the three types of ro-vibrational transitions are,

! 

P branch -  " " J = " J #1

              $E(J)
P

= E0 # (B'+B' ')J + (B'#B' ')J
2
 

Q branch -  " " J = " J 

              $E(J)
Q

= E0 + (B'#B' ')J(J +1) 

R branch -  " " J = " J +1

              $E(J)
R

= E0 + 2B'+(3B'#B' ')J + (B'#B' ')J
2
 

where now everywhere J stands for J’’

Unlike pure rotational transitions, ro-vib transitions 

depend quadratically on rotational quantum number.
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Ro-vibrational Progression for a Diatomic Molecule

• P transition frequencies are a monotone decreasing function 

    of J and start at v0

• Q transitions also start at v0 and crowd around this frequency.

• R transitions start 2B’ above v0 and increase with J for small J.

! 

J* =
3B'"B' '

2(B' '"B')

Because this is a stationary point, many transitions crowd 

around this point, which is called the bandhead.

For large J, the quadratic term cuts in and changes the 

frequency from an increasing to a decreasing function of 

J. The maximum frequency for the P branch is given by

Unlike rotational transitions within the same vibrational band,

the ro-vibrational transitions have an additional quadratic 

dependence (B’-B’’)J2. Since B’ < B’’ usually , this means that:
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Fortrat Diagram for AlH

Figure 25 from Herzberg I(Diatomic Molecules) plots J against 

(decreasing) frequency. This is inverted from the previous formulae 

for the frequency vs. J.

This is an optical (electronic) transition from an excited to the 
ground electronic state (1%$ 1&) so that there is a Q-branch.

band head

!

 J
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Caveat on Selection Rules

We used a diatomic molecule to illustrate P, Q, and R branches, even 

though they rarely have Q branches in the ground electronic state. A

more complete statement of the selection rules governing rotation-

vibration transitions (c.f. Rybicki & Lightman, Sec. 11.5) helps clarify

the situation:
 !J = 0, ±1 but not J=0"J=0

 !" = 0, ±1

 !J = 0 is not allowed for "=0 " "=0

 !v = any positive or negative integer

Most diatomic molecules are in " = 0 (&) ground electronic

states and therefore do not have Q branches. An important

exception is the OH radical, to be discussed in Lec. 20.

Q branches are more commonly found in polyatomic molecules

and in electronic transitions such as the 1%$ 1& transition of AlH 

shown in the previous side.
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P, Q, and R Branches for C3

Summary: P and R are linear in J for small J and quadratic for
large J; Q & (B’-B”) so the transitions crowd around E0

B’ !B” because the moment of inertia, proportional to <v|1/R2|v>,

depends on v. However B’ is only a little smaller than B” so that

the quadratic terms are small.

Interstellar absorption spectrum of
C3 for the X 1'g $ A 1$u transition.

Top: synthetic spectrum (T = 80 K)

for spectral resolution of 105.

Notice locations of P, Q, and R in

accord with previous formulae Adamkovics et al., ApJ, 595, 235, 2003
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CO(v = 2-0) First Overtone Bandhead

WL 16

Carr et al. ApJ, 411, L37, 1993

WL16 is a young stellar object 

with a broad and distorted 
bandhead near 2.3 µm providing 

information about its accretion disk.

The inset shows the intrinsic line

shape assumed in modeling the 

spectrum (solid curve) that  

generates the broad feature.

In 1992, the sensitivity was 

insufficient to detect individual 

ro-vib lines. The pile up of lines 

at the bandhead generates

enough flux to have made this 

measurement possible.
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Example of the Rigid Rotor

BJJEJEE
J

2)1()( =!!="

For the pure rotational spectrum of a rigid rotor, the energy

emitted in the transition J’=J! J’’=J-1 is (J is upper level)

For the ro-vibrational spectrum, with B’ = B” (J is always the

lower level), the transition energies are

and leads to the sequence 2B, 4B, 6B ... .

! 

P branch -  " " J = " J #1$ J

              %E(J)
P

= E0 # 2BJ 

R branch -  " " J = " J +1$ J

              %E(J)
R

= E0 + 2B(J +1) 

Q branch -  " " J = " J $ J

              %E(J)
Q

= E0  

In order of increasing energy or frequency:

… -6B   -4B   -2B    0    2B    4B    6B …

                                P branch           Q          R branch
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Brief Summary

1. Vibrational frequencies are well known in most cases.

2.  Ro-vib transition probabilities depend on the derivatives 
      of the dipole moment function µ (R).

3. Moments of inertia are conventionally ordered Ia < Ib < Ic 

    with  Ic = Ib > Ia  for prolate symmetric tops and

  Ic > Ib = Ia  for oblate symmetric tops 

4. The selection rules for symmetric tops, "K = 0, "J = ±1.

     imply that transitions are up and down “K-ladders”

5. Ro-vib transitions depend quadratically on J’’ - J’ and 

    lead to the crowding near the bandhead frequency 

    of P and Q branch transitions.


