21. Introduction to Interstellar Chemistry

- 1. Background
- 2. Gas Phase Chemistry
- 3. Formation and Destruction of H₂
- 4. Formation and Destruction of CO
- 5. Other Simple Molecules

References

- Tielens, "Physics and Chemistry of the ISM" (2006), Ch. 4 plus Secs. 8.8, 10.2, 10.4.4
- Duley & Williams, "Interstellar Chemistry" (1984)
- McKee, Lecture 19 (ay216-2006)
- van Dishoeck & Blake, ARAA 36 317 1998
- van Dishoeck ARAA, 42 119 2004

Data Collections

<u>http://www.udfa.net</u> (UMIST) <u>http://kinetics.nist.gov/kinetics/index.jsp/</u> (NIST)

ay216-09

1. Motivation for Interstellar Chemistry

Half the baryons in the ISM are in molecules ...

Interstellar chemistry began with the discovery of interstellar molecules. It now includes nano to micron sized *particles*, as well as molecules.

Some differences with terrestrial lab chemistry:

- 1. Much lower pressures
- 2. Extreme temperatures (cryogenic to hot)
- 3. External energy sources (UV, X-rays, CRs)
- 4. Time- and space-varying conditions (dynamics)

More than 145 molecules have been detected (not counting isotopes):

http://aramis.obspm.fr/mol/list-mol.html

Notice the many "exotic" species, e.g., small chains, unsaturated radicals, and ions.

1

Goals of Interstellar Chemistry

- (1) Model molecular diagnostics in terms of the physical conditions (temperature density, and ionization fraction).
- (2) Explore novel aspects of non-terrestrial chemistry and relate interstellar to pre-biotic chemistry.

Main Applications

- (1) **Interstellar Clouds:** Partially shielded diffuse and dense clouds, i.e., photon-dominated regions, and shocks
- (2) Outflows from Evolved Stars and SNRs
- (3) **Star-Formation**: Cloud cores, in-falling envelopes, disks and winds of young stellar objects
- (4) Structure formation in the early universe

ay216-09

3

2. Gas Phase Chemistry of Gas Clouds

Focus on cool (T < 100 K), low-ionization ($x_e < 10^{-3}$) gas with minimal attention to surface chemistry:

Diffuse Clouds and Exteriors of Molecular Clouds

Moderate density - typically 100 cm⁻³ Low temperature - typically 50 K Low ionization - mainly H⁺ and C⁺

Molecular Cloud Interiors

Intermediate density - typically 250 cm⁻³ Low temperature - typically 20 K Very low ionization - typically 10⁻⁷

Historical Note: Interstellar chemistry developed rapidly c. 1973, strongly influenced by Salpeter et al. (i.e., Gould, Werner, Watson, Hollenbach & Draine) and by Dalgarno et al. Other pioneering work emphasizing grain catalysis was by Bates & Spitzer (ApJ 113 441 1951) and Stecher & Williams (ApJ 146 88 1966).

Stimulating Chemical Activity

Little chemical activity occurs under the "mild" physical conditions of the gas just cited, e.g., the most abundant molecules in dense clouds, H_2 and CO, are unreactive.

- Even exothermic reactions may not proceed unless the collision energy is high enough to overcome some characteristic *activation energy* of order 1 eV.
- To activate cold chemistry, *energy has to be provided externally* in the form of UV or X-ray photons, cosmic rays, or mechanical energy (shocks).
- Chemistry in partially shielded quiescent regions is energized by *UV photons,* which dissociate molecules at rates ~10⁻¹⁰ s⁻¹ (i.e., on a time-scale as short as 300 yr). In shielded regions, *cosmic rays* and *X-rays* are invoked.

ay216-09

5

Generic Reaction Types

1. One-body

 $hv + AB \rightarrow A + B$ volumetric rate: G(AB) n(AB)CR + AB $\rightarrow AB^+ + e$ volumetric rate: $\zeta(AB) n(AB)$

2. <u>Two-body</u>

 $A + B \rightarrow C + D$ volumetric rate: k(AB;CD) n(A)n(B)

k is the reaction *rate-coefficient*

• The rate coefficient is usually a function of *T*, as in reactions with activation energy, where it varies as $\exp(-T_a/T)$, possibly multiplied by a power of *T*.

• Three-body reactions are rare because of the low ISM density.

• Volumetric rates are sensitive to both T and $n_{\rm H}$.

Examples of Specific Reaction Types

<u>Neutral Radical</u> – Warm regions (> 300 K); k up to 10^{-10} cm³ s⁻¹.

 $\begin{array}{c} \mathsf{O} + \mathsf{H}_2 \rightarrow \mathsf{OH} + \mathsf{H} \\ \mathsf{OH} + \mathsf{H}_2 \rightarrow \mathsf{H}_2 \mathsf{O} + \mathsf{H} \\ \mathsf{O} + \mathsf{OH} \rightarrow \mathsf{O}_2 + \mathsf{H} \end{array}$

The first two have to overcome thermal activation barriers and are suppressed in cool clouds.

<u>Ion-Molecule</u> – Often $k \sim 10^{-9} \text{ cm}^3 \text{ s}^{-1}$ and without activation energy for very exothermic reactions, and thus important for cool regions

charge exchange	$H^+ + O \rightarrow O^+ + H$
H-abstraction	$O^+ + H_2 \rightarrow OH^+ + H$
proton transfer	$H_3^+ + O \rightarrow OH^+ + H_2$

<u>**Radiative Association**</u> - Weak, but sometimes the only pathway, e.g., in the dark ages

$$e + H \rightarrow H^- + hv$$
 $H + H^+ \rightarrow H_2^+ + hv$

ay216-09

Photodissociation – Almost always important; typically ~10⁻¹⁰ s⁻¹.

 $hv + H_2 \rightarrow 2H$ (via Lyman and Werner band lines) $hv + OH \rightarrow O + H$

N.B. Many cross sections have not been measured accurately.

Dissociative Recombination - Always important; k~10-7 cm³ s⁻¹

e + $H_3^+ \rightarrow 3H$, H_2 + H (branching 3:1) e + $H_3O^+ \rightarrow OH + H_2$, OH + 2H, $H_2O + O$

Addendum on Surface Reactions – Important but poorly understood. One of the most important is grain synthesis of H₂: $H + H(Gr) \rightarrow H_2 + Gr$ at close to the geometric rate (e.g., Hollenbach & Salpeter 1971) but still slow.

Additional processes: *adsorption, desorption and catalysis* are all not fully understood. See Tielens' book.

ay216-09

7

3. Formation and Destruction of H₂

A. Formation in Cool regions (T < 100-300 K)

The simplest process, radiative association of two H atoms,

 $H + H \rightarrow H_2 + hv$,

is very weak (a ro-vibrational, quadrupole transition). For more than 40 years it has been generally assumed that H_2 is formed on grains, as in

volumetric formation rate = $R n_H n(H)$

where, following Hollenbach and Salpeter (1971), R is essentially the rate at which H atoms strike the available grain surface area (per unit volume) with a "sticking factor" of 1/3,

$$R = 3 \times 10^{-17} \text{ cm}^3 \text{ s}^{-1} (T/100 \text{K})^{1/2}.$$

NB McKee (Lec19-2006) gives a somewhat different development of H_2 formation and destruction. He uses a value for *R* that is as large, based on Bertoldi & Draine (ApJ 468 269 1996).

ay216-09

9

Formation of H2 on Grain Surfaces

- Incident H atoms can be bound by long and short range forces, commonly called physi-adsorption and chemi-adsorption.
- When another H strikes, it diffuses on the surface until it combines with a bound H, forms H₂ and leaves the surface.
- The processes of adsorption, sticking, binding, diffusion, formation and desorption depend on the gas and dust temperatures and the grain surface.
- Cazaux & Tielens (ApJ 575 L29 2000; ApJ 604 222 2004) find that the formation efficiency is ~ 1 for *T* < 30K and ~ 0.3 for 100 < *T* < 900 K.

Additional H₂ Formation Processes

B. <u>Formation in Warm Regions</u> (T > 300 K) – *radiative association* of H ions of both signs

1.	$H^+ + H \rightarrow H_2^+ + hv$	2. e+H → H ⁻ +hv
	$H_{2}^{+} + H \rightarrow H_{2}^{+} + H_{1}^{+}$	$H^{-} + H \rightarrow H_{2} + e$

Typical applications are post-recombination and outflows from YSOs.

C. <u>Formation in Very Dense Regions</u> (> 10¹² cm³) - *three-body* reactions. e.g.,

 $3H \rightarrow H_2 + H$ $2H + H_2 \rightarrow 2H_2$

with rate coefficients $10^{-33} - 10^{-32}$ cm⁶ s⁻¹. Typical applications are cool stellar atmospheres, YSO disks and jets.

ay216-09

11

Photodissociation of H₂

Following Lecture 19, H_2 is dissociated in a two-step process where a far UV photon is absorbed in a Lyman or Werner transition below 1108 Å, and the excited molecule decays into the continuum of the ground electronic state with the emission of a photon in the 1300-1700 Å band.

With typical oscillator strengths of 0.03, the L-W lines easily become optically thick. For example, with a Doppler parameter $b = 3 \text{ km s}^{-1}$, the standard formula for optical depth at line center

$$\tau(0) = f_{lu} \frac{\pi e^2}{m_e c} \frac{N_l}{\sqrt{\pi b}}$$

yields $N(H_2) > 10^{14} \text{ cm}^{-2}$. Thus absorption occurs mainly in the damping wings of the Lyman and Werner lines.

NB The theory of H₂ photodissociation was developed by Salpeter et al.. e.g., Hollenbach, Werner, & Salpeter (ApJ,163, 166, 1971) and applied to the early Copernicus observations by Jura (ApJ 191 375 1974) and Federman, Glassgold & Kwan (ApJ, 227, 466, 1979; *FGK*). See Warin et al. A&A 308 535 1996 for a more complete theory.

Shielding of the Photodissociation

Absorption of the dissociating radiation by the H₂ lines themselves reduces the photo rate. FGK related this **self-shielding** effect to the familiar concept of equivalent width by showing that the transmitted dissociating radiation is given by the *derivative* of the equivalent width. The proof follows from considering the definition of equivalent width for the transition $j \rightarrow k$:

$$W_{jk} = \int_{-\infty}^{\infty} d\nu \varphi(\nu) \Big[1 - \exp(-N_j s_{jk} \varphi(\nu)) \Big]$$

where $\sigma_{jk}(v) = s_{jk} \varphi(v)$ is the frequency dependent absorption cross section. Differentiation leads to:

$$\frac{\partial W_{jk}}{\partial (N_j s_{jk})} = \int_{-\infty}^{\infty} dv \varphi(v) \exp(-Njsjk\varphi(v)) = \frac{\int_{-\infty}^{\infty} dv \, s_{jk}\varphi(v) \exp(-N_j s_{jk}\varphi(v))}{\int_{-\infty}^{\infty} dv\varphi(v) s_{jk}\varphi(v))} = J_{jk}$$

 J_{jk} , the *line self-shielding function*, is the mean absorption cross section averaged over the line shape, taking into account attenuation. *It specifies the transmission of the dissociating radiation.*

ay216-09

13

The Line Self-Shielding Function

$$J_{jk} = \frac{\int dv \ s_{jk}\varphi(v)\exp(-N_j s_{jk}\varphi(v))}{\int_{-\infty}^{\infty} dv\varphi(v)s_{jk}\varphi(v)}$$

The line self-shielding function may be considered a function of the optical depth at line center,

$$\tau(0) = N_j s_{jk} \varphi(0) = f_{jk} \frac{\pi e^2}{m_e c} \frac{N_l}{\sqrt{\pi b}} \quad \text{(for Doppler broadening)}$$

 J_{jk} is a decreasing function of optical depth (or column), starting from unity at zero optical depth. In practice, a sum over all dissociating transitions needs to be carried out, leading to

$$G(\mathrm{H}_2) = G_0 J$$

where G_0 is the rate for $N(H_2) = 0$ and *J* is the mean self-shielding, Function for finite $N(H_2)$, averaged over all lines.

Curve of Growth and Line Self-Shielding

There are three regimes of equivalent width, depending on optical depth at line center:

τ ₀ << 1	linear	~ τ ₀
τ ₀ > 1	flat or logarithmic	~ $\log \tau_0^{1/2}$
τ ₀ >> 1	square-root	~ $\tau_0^{1/2}$

Differentiating W gives the corresponding behavior for J:

 $\begin{aligned} \tau_0 << 1 & J = 1 \\ \tau_0 > 1 & J \sim 1/\tau_0 \\ \tau_0 >> 1 & J \sim \tau_0^{-1/2} \end{aligned}$

The Lyman & Werner bands are usually very optically thick: the dissociation rate decreases as the inverse square root of the H_2 column density. Without any shielding, the rate due to the interstellar radiation field is

$$G_0 \sim 6 \times 10^{-11} \text{ s}^{-1}$$

ay216-09

г

15

Balancing H₂ Formation and Destruction

Balance the photodestruction rate $G_0 Jn(H_2)$ against the grain formation rate $Rn_Hn(H)$ and require mass conservation, $n_H=n(H) + 2n(H_2)$. The photo rate involves the sum of all accessible Lyman & Werner band transitions. The fraction of H₂ molecules can then be expressed approximately as:

$$f(H_2) = \frac{1}{1+\varepsilon} \qquad \varepsilon = \frac{G_0 J}{2n_H R} \qquad J \cong \sqrt{\frac{M}{N(H_2)}}$$
$$M = 6.75 \times 10^{11} \text{ cm}^{-2}, R = 3 \times 10^{-17} \text{ cm}^3 \text{ s}^{-1} (T_{100})^{1/2}, G_0 = 6 \times 10^{-11} \text{ s}^{-1}$$

 ε is the ratio of the formation to the photodissociation time scale. For a slab, ε *is* large outside (*J* =1), whereas inside *J* decreases with *N*(H₂) due to self-shielding until ε = 0 and *f*(H₂) = 1.

Grain formation of H₂ is slow: the formation time at 100 K is:

$$\frac{1}{Rn_{\rm H}} \approx 1 \,{\rm Gyr}\left(\frac{{\rm cm}^{-3}}{n_{\rm H}}\right)$$

4. Formation and Destruction of CO

A. Oxygen hydride formation by fast ion-molecule reactions ($k \sim 10^{-9} \text{ cm}^3 \text{ s}^{-1}$)

and fast dissociative recombination, $\beta \sim 10^{-7}$ cm³ s⁻¹ :

- The synthesis of OH is driven by the ions O⁺ and H₃⁺.
- This scheme also produces H₂O and other O-bearing molecules.
- OH is a crucial intermediary in the formation of CO; it requires H₂ as a precursor.

B. Gas-Phase Synthesis of CO

CO is rapidly produced from OH by fast reactions, e.g.,

$C^+ + OH \rightarrow CO^+ + H$	or, where C is more abundant
$\rm CO^{+} + H_{2} \rightarrow \rm HCO^{+} + \rm H$	than C ⁺ , the neutral reaction
$C^+ + H_2 O \rightarrow HCO^+ + H$	is effective: C + OH \rightarrow CO + H
$HCO^+ + e \rightarrow CO + H$	

In warm regions, radical reactions take the place of ion-molecule reactions:

O + H ₂ > OH + H	(slow - activation energy)
C + OH> CO + H	(moderately fast)

The idea of using ion-molecule reactions to initiate low-temperature interstellar chemistry is due to Watson (ApJ 183 L17 1973) and Herbst & Klemperer (ApJ 185 505 1973), although the latter did not give any theory for CO. Klemperer had earlier identified an unknown mm transition with HCO⁺ (ApJ 188 255 1974) and was responsible for the idea that this easily detected ion is the surrogate for the primary and difficult to detect molecular ion H_3^+

ay216-09

19

C. The Role of Cosmic Rays

The progenitor ions of the ion-molecule chemistry in coolregions are presumed to come from cosmic rays. The cosmic ray ionization rate in the solar neighborhood from demodulated satellite observations out to 42 AU is:

$$\varsigma_{\rm CR}$$
 (> 2 MeV) $\approx 5 \times 10^{-17} \, {\rm s}^{-1}$

This is for atomic H, i.e.,

 $CR + H \rightarrow H^+ + e$

Similar rates apply to He and H₂.

 $\label{eq:CR} \begin{array}{l} \mathsf{CR} + \mathsf{He} \rightarrow \mathsf{He^{+}} + \mathsf{e} \\ \mathsf{CR} + \mathsf{H}_2 \rightarrow \mathsf{H_2^{+}} + \mathsf{e} \ \text{and} \ \mathsf{H^{+}} + \mathsf{H} \ (5\%) \end{array}$

But H_2^+ is very reactive:

 $\begin{array}{c} \mathsf{H_2^+} + \mathsf{H} \ \rightarrow \ \mathsf{H^+} + \mathsf{H_2} \\ \mathsf{H_2^+} + \mathsf{H_2} \rightarrow \mathsf{H_3^+} + \mathsf{H} \end{array}$

and leads to H_{3}^{+} , the primary ion in ion-molecule chemistry. The O⁺ in ion-molecule chemistry comes from charge exchange with the cosmic ray produced H⁺ ion.

D. Destruction of CO

1. In partially UV-shielded regions, photo-dissociation occurs via the same two-step line process that operates for H_2 , with the following changes:

- a. $G_0 = 2 \times 10^{-10} \text{ s}^{-1}$ (for the mean UV radiation field),
- b. self-shielding is reduced since usually

 $x(CO) \le x(H_2).$

- c. mutual shielding occurs in the 912-1108 Å band by H_2 and even by lines of atomic H
- d. mutual shielding of the isotopes ¹³CO and C¹⁷O by the lines of ¹²CO and H₂ also occurs
- 2. In well-shielded (thick) clouds, CO is destroyed by the fast ion-molecule reaction

 $He^+ + CO \rightarrow C^+ + O + He.$

ay216-09

21

E. Summary of CO Synthesis

The chemically active ions are generated from neutral atomic O:

O⁺ (by charge exchange of H⁺)

OH⁺ (by proton transfer of H_3^+).

These ions are then hydrogenated by H_2 , producing the series OH_n^+ with n=1,2,3, but mainly OH_3^+ (if the abundance of H_2 is large). Recombination of OH_3^+ leads to O, OH and H_2O ; CO is made from the neutral reaction:

$$C + OH \rightarrow CO + H$$

or by ionic reactions:

 $\begin{array}{rcl} C^{*} + OH & \rightarrow & CO^{*} + H \\ CO^{*} + H_{2} & \rightarrow & \textbf{HCO^{*}} + H \\ C^{*} + H_{2}O & \rightarrow & \textbf{HCO^{*}} + H \end{array} \hspace{1.5cm} \text{followed by: } \textbf{HCO^{+}} + e \rightarrow & CO + H \\ \end{array}$

Once CO is formed, HCO⁺ can be produced directly from CO with H_3^+ : $H_3^+ + CO \rightarrow HCO^+ + H_2$.

Since H_3^+ and H_3O^+ are spherical rotors and HCO⁺ is linear (with a large dipole moment), *HCO⁺* is considered a strong signature of ionmolecule interstellar chemistry.

F. Caveats on Ion-Molecule Synthesis of CO

The ion-molecule reactions for CO synthesis are fast, but the ions may be in short supply in dense shielded regions because their abundance depends on ζ_{CR}/n_{H}

In lightly shielded regions the time scales are short, but only a small fraction of carbon goes into CO becauseof strong photodissociation.

Slow formation of H_2 may be the limiting factor in the synthesis of CO in atomic regions.

Cloud conditions can be critical: geometry, proximity to and strength of the stellar FUV radiation, temperature, and age of the cloud.

ay216-09

23

5. Other Simple Molecules A. Review of the Oxygen Chemistry

OH is the precursor of many molecules via moderately fast radical reactions e.g., O_2 and CO_2 :

 $O + OH \rightarrow O_2 + H$ $CO + OH \rightarrow CO_2 + H$

Chemical models had predicted full association of oxygen into H_2O and O_2 in shielded regions, as described above. This conclusion is *not* supported by SWAS and ISO.

SWAS (4' beam) did not detect O_2 at 487 GHz (616 microns), giving upper abundance limits of 10⁻⁶. It did detect the lowest rotational transition of H₂O at 547 GHz (538 microns), giving H₂O/H₂ ~10⁻⁸, and ten times higher for Orion and the Sgr B2 cloud (galactic center). **ISO** (1.3' beam) detected a variety of molecules in emission and

absorption, giving a large range of H_2O abundances:

 $H_2O/H_2 \sim 10^{-8} - 10^{-4}$.

ODIN -?

Conclusions on Oxygen Chemistry

Observations of O_2 and H_2O suggest that the dominant gas phase oxygen species is often **atomic oxygen**, consistent with limited observations of the OI fine-structure emission lines at 63 and 145 μ m.

SWAS may have emphasized cool regions where H_2O is frozen out onto grains or where the OH radical chemistry is inoperative due to activation energies ($T_a \sim 3000$ K).

ISO detections of H_2O in warm regions probably arise from thermally desorbed H_2O or OH radical chemistry, with heating by outflow shocks

Grains are important: In addition to incorporating O (as oxides of Si etc.), volatile gases freeze out on grains (as shown by ISO); grains may also catalyze chemical reactions.

Grain chemistry is poorly understood, but it is generally accepted that grains can hydrogenate the abundant heavy elements and synthesize H_2O , CH_4 , NH_3 , and CH_3OH among others (see Tielens 2006).

ay216-09

25

B. Complex Carbon Species

More than half of the interstellar molecules are polyatomic hydrocarbons. The most promising route is by "insertion reactions" (c.f. early work by Suzuki), e.g., C_2^+ , C_3^+ , C_2H_2 and C_3H_2 can be made with gas-phase reactions:

 $\begin{array}{lll} C^{+}+CH \rightarrow C_{2}^{+}+H & C^{+}+CH_{4} \rightarrow C_{2}H_{3}^{+}+H \\ C_{2}^{+}+H_{2} \rightarrow C_{2}H^{+}+H & C_{2}H_{3}^{+}+e \rightarrow \textbf{C}_{2}\textbf{H}_{2}^{+}+H \\ C_{2}H^{+}+e \rightarrow \textbf{C}_{2}^{-}+H & & \\ & C^{+}+C_{2}H_{2} \rightarrow C_{3}H^{+}+H \\ & C_{3}H^{+}+e \rightarrow \textbf{C}_{3}^{-}+H \\ & C_{3}H^{+}+H_{2} \rightarrow C_{3}H_{3}^{+}+hv \\ & C_{3}H_{3}^{+}+e \rightarrow \textbf{C}_{3}\textbf{H}_{2}^{-}+H \end{array}$

N.B. Not all routes and branches have been shown.

Compared to the mono-carbon species (CH, CH⁺, CH₄), the *gas phase chemistry of multi-carbon species is quite promising.*

Mono-carbon species are hard to synthesize by gas-phase reactions, e.g., CH_n n=1-4 and CH^+ :

<u>Problem #1</u>: $C^+ + H_2 \rightarrow CH^+ + H$ is endothermic by 0.4 eV. One possibility is *radiative association*

C⁺ + H → CH⁺ + hv $k \sim 10^{-17} \text{ cm}^3 \text{ s}^{-1}$ C⁺ + H₂ → CH₂⁺ + hv $k \sim 7 \times 10^{-16} \text{ cm}^3 \text{ s}_{-1}$

<u>Problem #2:</u> The sequence of abstraction reactions is broken at CH_3^+ .

$$CH_n^+ + H_2 \rightarrow CH_{n+1} + H$$

Again radiative association has been invoked:

$$CH_3^+ + H_2 \rightarrow CH_5^+ + hv$$

Radiative association is difficult to measure (de-excitation by a 3rd body occurs) and the theory is unreliable by 1-2 dex:

*CH*₄ is probably formed by hydrogenation on grains. ay216-09

C. Nitrogen Chemistry

• IP(N) = 14.5 eV: The most abundant nitrogen species in diffuse regions is atomic N.

• NH₃⁺ and NH₄⁺ interact weakly or not at all: standard ion-molecule sequence ends at NH₂.

Ion-molecule chemistry doesn't work as well for N as for C and O: NH₃ *is probably made on grains in cool regions.*

• CN can be made by *neutral reactions* from carbon radicals, e.g.,

$$\begin{array}{l} \mathsf{CH} + \mathsf{N} \rightarrow \mathsf{CN} + \mathsf{H} \\ \mathsf{C}_2 + \mathsf{N} \ \rightarrow \mathsf{CN} + \mathsf{C} \end{array}$$

And by ion-molecule reactions, e.g., $C^+ + NH \rightarrow CN^+ + H$ $CN^+ + H_2 \rightarrow HCN^+ + H$ or $H_3^+ + CN \rightarrow HCN^+ + H_2$ $HCN^+ + H_2 \rightarrow HCNH^+ + H$ $HCNH^+ + e \rightarrow HCN, HNC + H$ $HCN^+ + e \rightarrow CN + H_2$

• Polyacetylene chains can be built up along these same lines, e.g., $C_2H_2^+ + HCN \rightarrow HC_3N^+ + H_2.$

ay216-09

27