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1. INTRODUCTION AND BASIC DEFINITIONS

This discussion is based on a combination of Hollenbach and McKee (1979 ApJSuppl 41, 573;

HM); R. Genzel (1991, in The Talactic Interstellar Mediujm Saas Fe Lectures, ed. Burton, Genzel,

Elmegreen; RG); Scoville and Solomon (1974 ApJ 187, L67); Mihalis (1978: Stellar Atmospheres);

Ferland & Osterbrock (2006 textbook); the RADEX manual (van Langevelde & van der Tak 2008).

Until now, we have considered optically thin cases in which the brightness (specific intensity

I) increases linearly with the product of path length times volume emissivity. Clearly, though, this

can’t go on forever or else we’d get infinitely high brightnesses, or if not infinitely high, exceeding

the blackbody radiation field. So we must consider the effects of opacity, usually called by the

misnomer “optical depth” (opacity effects occur at all wavelengths, not just optical!).

We write the equation of transfer

dIν
ds

= ǫν − κνIν (1)

where ds is positive towards the observer, and we normally define two quantities, the optical depth

(opacity) τν and the source function Σν :

dτν = −κds (2a)

Σν =
ǫν
κν

(2b)
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Notice that dτ is positive away from the observer. That is, we speak of the front surface of a cloud,

or star, as as having optical depth zero, while somewhere in the deep interior of a cloud has s = 0.

With this, the equation of transfer becomes

dIν
−dτν

= Σν − Iν (3)

For a discussion of general solutions, see Mihalis.

Consider the LTE case in which the emission process is described by a single temperature

T . Then Σν = Bν(T ). In realistic ISM conditions, this temperature is not necessarily the kinetic

temperature because collisions may not dominate the distribution. So, more generally, we define

the excitation temperature Tx as that temperature that gives us the proper population ratio n2

n1
. (Here

we consider a two-level system with the upper level being 2 and the lower 1). Thus,

Σν = Bν(Tx) (4)

In the case of a single two-level system, we do not need Tx = TK ; in the case of a multiple level

system, such as a molecule, each pair of levels can have a different Tx and, moreover, the ratios n3

n1

and n3

n2
can have different Tx! So this use of Tx is completely general.

2. EXPRESSING IN TERMS OF EINSTEIN COEFFICIENTS

2.1. Some Important Relationships among Einstein Coefficients

The standard relationships among the Einstein coefficients are

A21 =
2hν3

c2
B21 (5a)

B21

g1
=

B12

g2
(5b)

Now define the energy of the emitted photon in temperature units, the transition temperature is

T21 =
hν

k
(6)

and consider an atom sitting in a blackbody radiation field whose temperature is T21. The ratio of

the downward radiatively induced rate to the downward spontaneous rate is
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B21J

A21
=

B21Bν(T21)

A21
=

1

e1 − 1
= 0.6 (7)

Thus we reach the important conclusion that for a transition in a a radiation field having J =

Bν(T21), the induced rate is nearly equal to the spontaneous rate. Of course, this conclusion is

hardly new: it appears in the basic reasoning Einstein used to derive his famous coefficients.

2.2. Emission and Absorption coefficients in terms of Einstein Coefficients

We are interested in spectral lines, not continuum. So we can express ǫ and κ in terms of

the Einstein coefficients. For a spectral line, κν contains the information on line shape. Einstein

coefficients give total emission/absorption integrated over the whole line, so they tell us κνdν. Then

∫

ǫνdν =
hν

4π
n2A21 (8a)

expresses the rate of photon emission per steradian times the photon energy, and
∫

κνdν =
hν

4π
(n1B12 − n2B21) (8b)

expresses absorptions minus stimulated emissions: κ is the net absorption, accounting for stimulated

emission from the upper level. This means that κ depends on Tx.

With the standard relationships among the Einstein coefficients, and the Boltzmann distribu-

tion n2

n1
= g2

g1
e−hν/kTx (Note the x in Tx !!), we have

∫

κνdν = n2
A21c

2

8πν2
(ehν/kTx − 1) (9a)

∫

κνdν = ntot
A21c

2

8πν2
g2
g1

1− e−hν/kTx

1 + g2
g1
e−hν/kTx

(9b)

There is some important behavior to notice in the above equation. If Tx → ∞, then κ → 0; in

this limit, stimulated emissions just cancel absorptions so κ → 0. If Tx → 0, then all the atoms go

to the ground state 1, so there are no stimulated emissions and

∫

κν,Tx=0dν = ntot
A21c

2

8πν2
g2
g1

(10)

Finally, negative temperatures aren’t excluded: they correspond to n2

n1
> g2

g1
—the case of interstellar

masers, with κ < 0.
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Now write the source function Σ: you find that n2, A21, and φν all cancel out so that

Σν = Bν(Tx) (11)

This simply reflects the fact that, by defining n2

n1
in terms of a temperature, we are in effect

assuming LTE; and in LTE the source function is always Σν = Bν(Tx). In particular, there are no

line parameters (Einstein A, shape function) in Σ!

3. EXPRESSING TEMPERATURES IN TERMS OF THE EQUIVALENT

RAYLEIGH-JEANS TEMPERATURE TRJ

We always encounter the lengthy expressions of the sort
[

2hν3

c2
(ehν/kT − 1)−1

]

, which makes

equations cumbersome. Here, T might be a brightness temperature TB, an excitation temperature

Tx, or a kinetic temperature TK . In the RJ limit this simplifies to
[

2kTν2

c2

]

. This makes it convenient

to follow Genzel and define the equivalent Rayleigh-Jeans temperature TRJ . With this,

kTRJ

hν
=

1

ehν/kT − 1
(12a)

TRJ

T21
=

1

eT21/T − 1
(12b)

Bν(T ) =
2kν2TRJ

c2
=

2kTRJ

λ2
(12c)

In the RJ limit T21

T . 1, TRJ → T . In the Wein limit T21

T & 1, the exponential dominates, and

TRJ → T21e
−T21/T .

Figure 1 shows this somewhat complicated function for the important case of the CO (1-0)

line, for which T21 = 5.53 K. Looking at this, one sees huge nonlinearity for TB . 2.5 K, so weak

lines would seem to be grossly affected. However, not to worry! The minimum possible TB is the

CBR, 2.73 K. All line intensities add on to this continuum brightness. When you observe a line,

you are observing the difference between the (line plus continuum) and the (continuum). So an

apparently weak line of apparent brightness of, say, 0.1 K actually has brightnes 2.83 K; you notice

the difference. Note, also, the constant difference as the RJ limit is approached (i.e., large TB). The

difference is T21/2 and results from the second-order term in the Taylor expansion for exp(T21/TB).

With this simple way of writing things, we have for the absorption coefficient:

∫

κνdν = n2
A21c

2

8πν2
T21

TRJ,x
(13a)
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TRJ vs TB for the CO (J=1−0) line
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Fig. 1.— The Rayleigh-Jeans equibalent temperature TRJ versus the actual true blackbody tem-

perature TB for the [CO (J=1-0)] line, for which T21 = 5.53 K. The dashed line has TRJ = TB.

∫

κνdν = ntot
A21c

2

8πν2
T21

TRJ,x

g2
g1

1 + g2
g1

+ T21

TRJ,x

(13b)

The last factor is just n2

ntot
and is a bit cumbersome. Nevertheless, it is worth looking at this

equation in the RJ limit, which corresponds to the important case of the 21-cm line (and many

other radio lines, for that matter). Here, the last factor→ 1
(g1/g2+1) and κ ∝ 1

Tx
, so that cold clouds

have higher optical depths. This happens simply because the upper state gets less populated at

colder temperatures, reducing the ratio of stimulated emissions to absorptions.

For the source function and specific intensity, we have:

Σν =
2kTRJ,x

λ2
(14a)

Iν =
2kTRJ,B

λ2
(14b)

so we can write for equation 3, the fundamental equation of transfer,

dTRJ,B

−dτν
= TRJ,x − TRJ,B (15)
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4. THE LINE SHAPE FUNCTION φν

Let φν be the line shape function. It is the probability per unit frequency interval that the

photon is emitted;
∫

φνdν = 1. As φν gets narrower, the line-center opacity increases: φν,LC ≈ 1
δν ,

where δν is the line width. This means κν ∼ κLCδνφν , where κLC is the opacity at line center.

Lines are commonly represented by Gaussians; if thermal broadening alone determines line

shape, this is exact. Sometimes it is also important to include the Lorentzian “damping wings” or

pressure broadening; the combination of a Gaussian and a Lorentzian is a Voigt profile (see RL).

We, however, will stick with Gaussians. For a Gaussian,

φν =
1√
πδν

e
−∆ν2

δν2 (16a)

and

τν = τLCe
−∆ν2

δν2 =
√
πτLCδνφν (16b)

where τLC is the optical depth at line center, ∆ν is the frequency offset from line center and δν is

half the full 1
e width. Observers usually use the full width at half maximum δνFWHM , for which

δνFWHM = 2(ln 2)1/2δν = 1.665δν (17a)

∫

τdν =

√
π

2(ln 2)1/2
τLCδνFWHM = 1.065τLCδνFWHM (17b)

In terms of velocity V (km s−1; δV = λδν),

δVFWHM = 0.213

√

T

A
km s−1 (18a)

T = 21.8 δV 2
FWHMA (18b)

5. THE INTEGRATED OPTICAL DEPTH

Define NTx=0 to be the total column density assuming all species are in the lower (1) state

(which corresponds to Tx = 0). Then, rewriting equation 10,

∫

τν,Tx=0dν = NTx=0
A21c

2

8πν2
g2
g1

(19)
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We usually express column densities in terms of the H-nuclei column density N(H); then Ntot =

AN(H), where where A is the cosmic abundance of the element in the gaseous phase (some atoms

are depleted onto dust). We define the reference H-column density N(H)ref as that H-nuclei column

density for which the line-center optical depth is unity, i.e. τLC,Tx=0 = 1, for the particular case

δVFWHM = 1 km sec−1.Then we have, from the above,

N(H)ref =
2.68× 1018

A
g1
g2

1

A21λ3
µ

cm−2 (20)

The line center optical depth becomes, in terms of Tx,

τLC =
N(H)

N(H)refδVFWHM

1− e−T21/Tx

1 + g2
g1
e−T21/Tx

(21a)

τLC =
N(H)

N(H)refδVFWHM

T21

TRJ,x

T21

TRJ,x
+ g2

g1
+ 1

(21b)

5.1. Some important lines and species

First, the 21-cm line, for which A21 = 2.85× 10−15 s−1, g2
g1

= 3
1 , and T21 = 0.068 K.:

N(H)ref,HI 21cm = 3.34× 1016 cm−2 (22)

For the two most important FS lines in PDR’s:

N(H)ref,CII 157µm = 3.56× 1020 δ−1 cm−2 (23a)

N(H)ref,OI 63µm = 3.14× 1020 δ−1 cm−2 (23b)

where we take the atomic parameters from Genzel. These lines have g1
g2

= 2
4 and 5

3 . We take

A = (6.3× 10−4, 4.0× 10−4) for (O, C). These are the undepleted cosmic abundances from Spitzer.

Using undepleted abundances is logically inconsistent in a PDR, where dust grains certainly exist

and, indeed, have probably had time to grow by accreting even more interstellar gas atoms that in

normal environments. Thus, the true N(H)ref are larger than the numerical values given above by

the inverse of the depletion factor δ−1, as written; the total gaseous abundance is Aδ. The T21’s

for these lines are 92 and 230 K; the low T21 for CII makes it the most important coolant for the

diffuse cold atomic ISM, where the temperature is too low to excite OI. The critical densities are

∼ 2800 and 4.7× 105 cm−3; the high value for OI makes it the most powerful atomic coolant in the

dense PDR’s that occur next to HII regions. Of somewhat lesser importance is the related OI line,
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N(H)ref,OI 145µm = 2.46× 1020 δ−1 cm−2 (23c)

Finally, for dust (which is continuum, not line), we have (for producing optical depth τ = 1 at

the specified wavelength):

N(H)ref,V = 1.8× 1021 cm−2 (24a)

N(H)ref,1000A = 4.2× 1020 cm−2 (24b)

Dust extinction in the FIR is negligible for our purposes.

5.2. Optical depths: HI versus CI in the CNM and WNM

Let’s take a look at the optical depths of the 21-cm and 158 µm lines. Using equations 22 and

21a, we have

τLC,HI 21cm =
N(HI)

1.96× 1018
1

δVFWHMTx
(25a)

At a typical CNM temperature of 50 K,

τLC,HI 21cm =
N(HI)

9.8× 1019
1

δVFWHM (Tx/50)
(25b)

For the 158 µm line, CNM volume density should be much smaller than the critical density, so

Tx ≪ T21, in which case the ratio of exponentials on the right-hand side of equation 21a → 1, so

using equation 23a we have

τLC,CII 158µm =
N(HI)

3.56× 1020
δ

δVFWHM
(26)

This equation shows that the 158 µm line can easily be optically thick, because column densities

N(HI) > 3.56× 1020 cm−2 are not unusual, particularly along lines of sight in the Galactic plane.

These two important lines have comparable optical depths. Specifically,

τLC,CII 158µm

τLC,HI 21cm
= 0.27δ

Tx

50
(27)

In particular, for the warmer CNM clouds the optical depths become more comparable. The WNM

is an interesting case: the 21-cm line optical depth is small because Tx is high, and per unit N(HI)

the 158 µm optical depth is independent of Tx, so the CII line is much more optically think than

the 21-cm line.
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6. SOLUTION OF RADIATIVE TRANSFER FOR TWO SIMPLE CASES WITH

KNOWN Tx

Suppose we know Tx as a function of z, or equivalently τ ; then one can explicitly solve equation

15. As we shall see, this happens only under two circumstances: (1) collisions dominate (ncrit

ncoll
≪ 1)

and (2) collisions don’t dominate but τLC ≪ 1. In both cases, as we shall see, Tx depends only on

TK and ncrit

ncoll
.

In the nice case of a slab in which TK , and therefore Tx, is constant, we have

TRJ,B = TRJ,x(1− e−τν ) + TRJ,B,BKGNDe
−τν (28a)

which has the nice simple interpretation: the first term is the emission within the slab; the second

term is the emission incident from behind, attenuated by the opacity of the slab.

The line intensity is usually measured with respect to the surrounding continuum. If TRJ,B,BKGND

is frequency-independent continuum, denoted by TRJ,B,BC (for Background Continuum), then the

apparent line intensity is

TRJ,B,APP = TRJ,B − TRJ,B,BC = (TRJ,x − TRJ,B,BC)(1− e−τν ) (28b)

Note that we have either an emission or absorption line, depending on the sign of (TRJ,x−TRJ,B,BC).

In other words, cold clouds produce absorption lines.

6.1. Collisionally dominated: e.g. the 21-cm line

This simple case applies to the 21-cm line, for which Tx = TK because the critical density ncrit

is very small. Moreover, because of the low frequency (T21 = 0.068 K) all the TRJ ’s become just

plain T ’s and, in particular, TRJ,B becomes the standard brightness temperature TB. Using this in

equation 22, we have the interesting limits, first for the combination (τLC ≪ 1) and (TB,BC ≪ TK):

TB,APP = TB,LC − TB,BC → TKτLC =
N(HI)

1.96× 1018δVFWHM
(29a)

∫

TB,APPdV → N(HI)

1.83× 1018
(29b)

which means that the integrated line intensity ∝ the HI column density and is independent of TK .

This, plus the fortunate circumstances that the 21-cm line is, in fact, usually fairly optically thin
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and TB,BC is small, are of crucial importance for 21-cm line surveys: they provide the total HI

column density.

The other interesting limit is, of course, τLC ≫ 1:

TB,LC → TK (29c)

so it’s equivalent to being inside a blackbody at temperature TK—as it must be. Note that TB,LC−
TB,BC = TK − TB,BC : the line can be in absorption or emission, but in both cases case TB,LC →
TK , independent of TB,BC—which, of course, makes sense because the background continuum is

completely absorbed.

6.2. Collisions don’t dominate but τLC ≪ 1

This case is characterized by the important necessity that induced radiative transitions can be

ignored. That is, only two types of transition are important: collisions and spontaneous photon

emission.

6.2.1. Let’s calculate Tx

Define the upward collisional rate to be n1ncollγ12 and the lower to be n2ncollγ21 cm−3 sec−1.

Here ncoll is the volume density of colliding particles; for example, in an HII region they are usually

electrons and in a neutral region hydrogen atoms or molecules. LTE considerations mean that
γ12
γ21

= g2
g1
e−hν/kTK . In this case the equation of statistical equilibrium is

n1ncollγ12 = n2(ncollγ21 +A21) (30)

The solution of this is just

n2

n1
=

g2
g1

e−T21/Tx =
g2
g1

e−T21/TK

1 + ncrit

ncoll

=
g2
g1

1
(

1 + ncrit

ncoll

)(

1 + T21

TRJ,K

) (31a)

TRJ,x =
TRJ,K

1 + ncrit

ncoll

(

1 +
TRJ,K

T21

) (31b)

where

ncrit =
A21

γ21
(32)
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Now, you’d think that when ncoll ≫ ncrit, i.e. when the downward collisional rate≫ the spontaneous

photon emission rate, you’d always have Tx = TK . And this is, in fact, true for the anti-RJ limit
T21

TK
≫ 1 (in which case we also have T21

TRJ,K
≫ 1) so its inverse can be neglected in the above

equation. But owing to the exponentials, this isn’t true for the RJ limit: there, TRJ,K ≈ TK so
kTRJ,K

hν ≫ 1 and then what matters is the product
kTRJ,K

hν
ncrit

ncoll
: in effect, ncrit gets raised by the

large factor kTK

hν !

For completeness, we give the relationship in terms of n2

ntot
instead of n2

n1
:

n2

ntot
=

n2

n1

1 + n2

n1

=
g2
g1

e−T21/Tx

1 + g2
g1
e−T21/Tx

=
g2
g1

e−T21/TK

1 + g2
g1
e−T21/TK + ncrit

ncoll

(33a)

n2

ntot
=

g2
g1

1
(

1 + ncrit

ncoll

)(

1 + T21

TRJ,K

)

+ g2
g1

(33b)

6.2.2. IMPORTANT RESTRICTION ON THIS SOLUTION!!!

Knowing Tx, and knowing that it is constant within the region, the solution of the equation of

transfer is just equation 28

TRJ,B = TRJ,x(1− e−τν ) + TRJ,B,BKGNDe
−τν (34)

In section 2.1, we found that if TRJ,B becomes comparable to T21, then the induced and

spontaneous radiative rates are nearly equal. We neglected radiative rates in deriving Tx. Thus,

the above solution is only valid if TRJ,B ≪ T21. In the optically thick limit, TRJ,B → TRJ,K . Thus,

for τ & 1, we require TRJ,K . T21. But usually we are interested in cases where collisional excitation

is effective, which in turn means TK & T21. Thus, for most cases of interest, the above solution is

valid only for τ ≪ 1.

6.2.3. Solution for τ ≪ 1

For τ ≪ 1, the background is almost unattenuated so the emergent line brightness, minus the

background, is

TRJ,B,APP = TRJ,B − TRJ,B,BC → (TRJ,x − TRJ,B,BC)τν (35)

τ depends on Tx: using equation 21 and letting TLC,APP be the apparent line-center radiation

temperature, we have
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TRJ,LC,APP = TRJ,B,LC − TRJ,B,BC =
N(H)

N(H)refδVFWHM

(

1− TR,BC

TRJ,x

)

T21
g2
g1

+ 1 + T21

TRJ,x

(36)

Note that TRJ,x appears in the denominators, which makes the equation look a lot simpler than it

really is! Anyway, we have two interesting limits.

First is the high-density limit ncrit

ncoll
≪ 1. In this case collisions dominate: TRJ,x → TRJ,K and

the complicating TRJ,x in the denominator disappears so we get

TRJ,LC,APP = TRJ,B,LC − TRJ,B,BC =
N(H)

N(H)refδVFWHM

(

1− TB,BC

TRJ,K

)

T21
g2
g1

+ 1 + T21

TRJ,K

(37)

The emergent line intensity ∝ column density. This is hardly unexpected, because this is the same

case as the 21-cm line treated above.

Next is, of course, the low-density limit. With ncrit

ncoll
≫ 1, collisions are infrequent and from

equation 31b we get:

TRJ,x → TRJ,K

1 +
TRJ,K

T21

ncoll

ncrit
(38)

so TRJ,x ≪ TRJ,K . If, also, we achieve the perhaps more restrictive condition T21

TRJ,x
≫ (1 + g2

g2
),

then equation 36 yields

TRJ,LC,APP = TRJ,B,LC − TRJ,B,BC → N(H)

N(H)ref

(

TRJ,K

1 +
TRJ,K

T21

ncoll

ncrit
− TRJ,B,BC

)

(39)

so TRJ,x drops out. If TR,BC → 0, then TR,LC ∝ Nn, which is equivalent to the emission measure

dependence for the low-density limit in HII regions. Fundamentally, the reason is obvious: the

optical depth is small, so every collisional excitation leads to a photon and it escapes without

hindrance because τ ≪ 1.

7. MORE GENERAL CASE OF KNOWN TK AND n: ESCAPE PROBABILITY

FORMALISM

But what is Tx in the general case? A complicated question, so complicated that it can’t be

done analytically except by approximation. More generally, we have to include radiative transitions

so instead of equation 30 we have
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n1(ncollγ12 + JB12) = n2(ncollγ21 +A21 + JB21) (40)

So the population ratio, i.e. Tx, depends on J (equivalent to TB), TK , and ncoll. We know TK and

ncoll. (In fact, most generally we know the emergent intensities from measurement and want to

determine TK and ncoll! But for now we’ll regard density and kinetic temperature as given.)

But we don’t know TB. Knowing TB requires solving the equation of transfer. But to solve

that, we need to know Tx and τ ′ (i.e., absorption coefficient) as functions of depth within the region.

But they, in turn, depend on TB if radiative excitations are important. They are all coupled—a

difficult problem! This general situation is often called photon trapping, radiative trapping, line

trapping. . . It is not amenable to a straightforward analytic solution.

For this reason, we introduce an approximation called the escape probability formalism. We

will illustrate all this with the simplifying example of a two level system.

7.1. Equation of Statistical Equilibrium for the Photons

Here we consider the photons as a gas. Suppose we are deep in the middle of a slab and τ > 1, so

photons have a hard time escaping. Photons are created in only two ways: by spontaneous emission

(n2A21) and induced emission (n2JB21). They are removed in only two ways: by absorption

(n1JB12) and by escaping the immediate region (as opposed to the entire slab). Here, the rates

are cm−3 sec−1.

We consider escape to occur only for those photons that are spontaneously emitted. If a

photon produced an absorption before escaping, we consider it to be part of the photon gas. In

this way, the rate of escape from the region is βn2A21, where β is the escape probability. Setting

the production rate equal to the loss rate, we get

n2(A21 + JB21) = n1JB21 + n2A21β (41a)

(1− β)n2A21 = J(n1B12 − n2B21) (41b)

We have neglected photons from the external radiation incident on the slab. External radiation

is partially absorbed on its way into the cloud; one could include this contribution as an additive

term above.
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7.2. Equation of Statistical Equilibrium for the Level Population and the

Excitation Temperature inside the Slab

Inside the slab, the excitation temperature Tx (equivalently the population ratio n2

n1
) is deter-

mined by the usual equation of statistical equilibrium with no terms omitted (equation 40):

n1(ncollγ12 + JB12) = n2(A21 + ncollγ21 + JB21) (42)

which can’t be solved without knowing the mean intensity J . But J is given by equation 41.

Eliminating J above, we get

n2

n1
=

g2
g1

e−T21/Tx =
g2
g1

e−T21/TK

1 + βncrit

ncoll

=
g2
g1

1
(

1 + βncrit

ncoll

)(

1 + T21

TRJ,K

) (43a)

TRJ,x =
TRJ,K

1 + βncrit

ncoll

(

1 +
TRJ,K

T21

) (43b)

(HM equation 5.26; SS equation 5)1. Compare this with equation 31, which is the equivalent for

no radiative trapping, and we see that ncrit is lowered by the factor β. The reason is simple:

without trapping, ncrit =
A21

γ21
is defined by a competition between spontaneous photon emission

and collisional depopulation; with radiative trapping, photons increase n2, which is equivalent to

decreasing A21.

For completeness, we give the relationship in terms of n2

ntot
instead of n2

n1
:

n2

ntot
=

g2
g1

e−T21/Tx

1 + g2
g1
e−T21/Tx

=
g2
g1

e−T21/TK

1 + g2
g1
e−T21/TK + βncrit

ncoll

(44a)

n2

ntot
=

g2
g1

1
(

1 + βncrit

ncoll

)(

1 + T21

TRJ,K

)

+ g2
g1

(44b)

7.3. The Emergent Intensity

We make the approximation that all physical conditions, including β, are independent of

position. This means that Tx is also independent of position. Then the emergent intensity is given

by equation 28

1Note we have neglected the external continuum in equation 43. This means that, as ncoll → 0, this equation

incorrectly yields TRJ,x → 0; in fact, we expect Tx → TR,BKGND in this limit.
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TRJ,B,LC = TRJ,x(1− e−τLC ) + TRJ,B,BKGNDe
−τLC (45a)

TRJ,LC,APP = TRJ,B,LC − TRJ,B,BC = (TRJ,x − TRJ,B,BC)(1− e−τLC ) (45b)

(SS equation 4), where TRJ,x is from equation 43 and τLC from equation 21; you can solve these

numerically, as in our example below.

The behavior is the same as discussed in §6.2, with two exceptions: First, the restriction

TRJ,B ≪ T21 doesn’t apply; second, βncrit replaces ncrit. In particular, for τLC ≪ 1 and βncrit

ncoll
≪ 1

there is an emission-measure like dependence, with the emergent intensity ∝ Ntotncoll.

7.4. The cooling rate

In the optically thin case, the cooling rate n2Λ = n2A21; all spontaneously emitted photons

leave. Here, only a fraction β leave, so n2Λ = βn2A21.

7.5. The Escape Probability for Various Geometries

The escape probability depends on the optical depth and the geometry. An excellent summary

is in the RADEX manual, but it is sometimes unclear, e.g. for a sphere, whether stheir definition

of ‘optical depth’ is for the diameter or for the radius. Below we gather some expressions from

different sources, not all of which agree. In principle, dust can contribute to β, but for FIR lines it

is usually negligible (see section 5.1).

7.5.1. A Uniform Slab of width 2τLC

For a slab of total width 2τLC , a good enough approximation2 is

β =
1− e−4.1τLC

4.1τLC
(46)

In contrast, the RADEX manual gives

β =
1− e−3τLC

3τLC
(47)

2See refs quoted by Genzel or HM. HM provide a better analytical form for this approximation, but its answers

are reasonably close to equation 46, which is more commonly used.
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Who knows which is right. In any case, the emergent intensity for a slab depends on the

viewing angle. Using this equation with equation 45 gives the brightness normal to the slab.

7.5.2. A Uniform Sphere of center-to-edge τLC

Averaging over a uniform sphere of radial opticcal depth τLC , a good enough approximation

(according to Draine, equation 19.11) to a more complicated expression (Ferland & Osterbrock

Equation (4.46); also the RADEX manual) is

〈β〉cloud =
1

0.5τLC
(48)

However, the equations don’t match as well as Drain implies, so there’s something wrong here.

7.5.3. The Sobolev Approximation for an expanding slab

In an expanding region, the central frequency in the line shape function is a linear function of

position. Thus, the optical depth for a photon depends on the velocity gradient; once the central

frequency moves by ∼ the line width, the photon suffers no more opacity. From SS, define

τSOB =
λ3A21ntot

8π dV
dz

g2
g1

T21

TRJ,x

1 + g2
g1

+ t21
TRJ,x

(49a)

which can be expressed in terms of equation 21 by settingN(H) = n(H)/ δVFWHM

LSOB
, where δVFWHM

LSOB
=

1
1.065

dV
dz .

τSOB =
1.065 n(H)

dV/dz

N(H)ref

T21

TRJ,x

T21

TRJ,x
+ g2

g1
+ 1

(49b)

With this, the escape probability is given by equation 46, but with the factor 4.1 replaced by 1

(Draine (19.28); RADEX manual);

β =
1− e−τSOB

τSOB
(50)
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7.6. A Numerical Example

Using equations 21, 43, and 45, you can’t obtain a closed-form expression for the physical

conditions and emergent intensity. But you can use them numerically to make a graph. Figure 2

exhibits some solutions for the CII 158 µm line. Here, we took TRJ,B,BG = 0 K, TK = 50 K, and

three values of τLC,(Tx=0) = N(H)
N(H)ref δVFWHM

, which in the figure we denote NRATIO; the three

values are NRATIO = (0.2, 1, 5) as shown.

Instead of doing this yourself, you can use the widely-used RADEX program, which is available

on-line at the LAMBDA site.

7.7. Comment for Aficionados

Aficionados of radiative transfer realize that there are two limiting approximations in treating

photon scattering. Here, by “photon scattering”, we mean the process in which a photon is absorbed

in a 1 → 2 transition and then subsequently re-emitted in a 2 → 1 transition.

One approximation is coherent scattering, in which the outgoing photon has exactly the same

frequency as the incoming one. The other is noncoherent scattering or complete redistribution,

which means that the scattered photon comes off with absolutely no relationship to the incoming

one—in short, that the scattered photons have line shape is φν . An accessible discussion of the

differences is given by Ambartsumian (1958, Theoretical Astrophysics, chapters 3.5 and 14.2).

It is said that if the line shape function φν is defined by thermal Doppler shifts, then complete

redistribution is a good approximation. That’s good: it means that all processes, including emission

and scattering, are governed by the same line shape function φν . That assumption is implicit in

the escape probability treatment. The other extreme, where photons are in the damping wings,

would be better approximated by coherent scattering.
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Fig. 2.— Graphs of excitation temperature, emergent radiation temperature, and beta for the CII

line


