
ESSENTIALS OF WEEK 2, ASTRONOMY 127

3. More Non-LTE:

3.1. Radiative transitions and rates. In week 1 we covered collisions and derived a relation

between collisional rates using thermodynamical arguments. Here we follow exactly the same

procedure for radiative rates. For upwards radiative transitions there is a single process, absorption

of a photon; the rate is

Rrad
12 = J̄νB12 (10)

where B12 is the Einstein B coefficient for the upwards transition and J̄ν is the mean intensity,

which is the direction-averaged specific intensity:

J̄ν =

∫

ĪνdΩ

4π
(11) (11)

In these equations, the “bar” sign over Jν and Iν means that the quantity is averaged in frequency

over the width of the spectral line. For downwards transitions we have the analogous photon-

induced rate R21 = J̄νB21 and, in addition, the spontaneous rate, which is equal to the Einstein

A21.

3.1.1. Specific intensity, mean intensity, and flux: Note the difference between specific intensity

Iν , mean intensity Jν , and flux. The specific intensity Iν measures the intensity of radiation as

a function of direction and has units erg/sec-cm2-Hz-ster. Mean intensity Jν is the average of Iν
over solid angle and so is a measure of the total number of photons coming in, independent of

the direction. The units of mean intensity are erg/sec-cm-Hz2—the “per ster” is gone because it

is an average over all directions. This quantity—the total number of photon coming in—is what

is relevant for photon-induced transitions, because the total rate at which an atom suffers such

transitions is proportional to the total number of photons coming in, and it doesn’t matter what

direction they come from. In contrast, flux is the net power per cm2 flowing across a surface, and

is equal to
∫

I cos θdΩ, where θ is measured with respect to the direction of interest. Flux is the

quantity normally dealt with in elementary astronomy, and certainly does depend on direction. For

example, the luminosity of a star is the flux at the stellar surface multiplied by the star’s surface

area. Thus the units of flux are erg/sec-cm2. To appreciate the difference between flux and mean

intensity, imagine yourself suspended in the middle of a blackbody cavity at temperature T . The

flux is zero: there is as much radiation flowing in one direction as in the opposite direction. But

the mean intensity is equal to Bν(T ), the blackbody radiation field, and if T is hot enough you will

roast—evenly on all sides.

3.1.2. Induced and spontaneous radiative rates. If radiative rates dominate collisional rates by

a large factor, and if the radiation field is a true blackbody (a rare condition in astronomy!) at
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temperature Tr, then

n2

n1

=
g2
g1

exp(−E21/kTr)(12) (12)

This is known as the “principle of detailed balancing”, and arises from fundamental considerations

in thermodynamics and statistical mechanics. This fact allows us to write

Rrad
12

(Tr)

Rrad
21

(Tr)
=

g2
g1

exp(−E21/kTr)(13) (13)

which is a relation between the upwards and downwards radiative rates. In term of the Einstein

coefficients, this relation is

B12

B21 +A21/Bν(Tr)
=

g2
g1

exp(−E21/kTr)(14) (14)

and this leads to relationships among the Einstein coefficients. This relations are, fundamentally,

among atomic properties, and thus hold universally. They are

B12

B21

=
g2
g1

(15) (15)

B21 =
A21c

2

2hν3
(16) (16)

The ratio of downward-induced (“maser”-type transitions) to spontaneous rates is

induced

spontaneous
=

J̄νB21

A21

which reduces to

induced

spontaneous
=

1

exp(hν/kT )− 1

which shows that spontaneous transitions dominate induced transition for hν >
∼ kT . This, in turn,

means that in radio astronomy (usually characterized by hν ≪ kT ) induced transitions are very

important. For optical/UV lines in interstellar space, the mean intensity J is reduced far below the

blackbody value by the geometrical dilution, so in most cases we can neglect induced transitions

when calculating transition rates.

In general, the Einstein A is given by
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A21 =
64π4ν3

3c3h
|µ|2(17) (17)

or

A21 = 1.75× 1044
(

ν

2.47× 1015Hz

)3

|µ|2 sec−1(18) (18)

where we have normalized the frequency ν to that for the Lyman α (n = 2− 1) transition in the H

atom. |µ| is called the “matrix element for the transition”. For dipole transitions it is also called

the “dipole moment” and is equal to

µ12 = e

∫

Ψ∗

1rΨ2dV ∼ erBohr(19) (19)

or, in classical terms, the electron charge times the mean separation of the electron and proton.

With e = 4.8×10−10 (esu–use this value in all formulae given in this course) and rBohr = 0.53×10−8

cm, equation (18) gives A21 = 1.0 × 109 sec−1 for the Lyman α transition. With an accurately-

calculated value for |µ|, the correct value for A21 is 3.8×109 sec−1. Equation (18 + 19) gives typical

values for the Einstein coefficients of “allowed” transitions. However, many of the transitions we

will deal with are “forbidden”. This means that the integral (19) is equal to zero, and |µ| is given

at a higher level of approximation by “electric quadrupole” or “magnetic dipole” transitions. Such

rates are smaller by a factor of typically ∼ 106 so have much smaller values of A—often about 1

sec−1 for optical transitions.

3.2. Combining collisions and radiation. From equation (2) (see week 1), and neglecting

induced radiative rates because J is so small in interstellar space, we get

n2

n1

=
Rcoll

12

Rcoll
21

+A21

(20) (20)

Let us now include, explicitly, the dependency of collisional rates on the density of colliding particles

by writing R = ncolliderP ; here we take R to be the collision rate per collidee (units of R: sec−1)

and P to the probability of a collision per collidee for [ncollider = 1 cm−3] (units of P : cm3 sec−1).

We do this because P , which is just 〈σv〉 in equation (5), is an atomic parameter and depends only

on temperature, not density. Then equation (20) becomes

n2

n1

=
P coll
12

/P coll
21

1 + (A21/ncolliderP21)
(21) (21)

or
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n2

n1

=

g2
g1

exp(−E21/kTk)

1 + (A21/ncolliderP21)
(22) (22)

or

n2

n1

=
LTE value for Tk

1 + (A21/ncolliderP21)
(23) (23)

This makes it explicitly clear that there is just one single parameter, (A21/ncolliderP21), that de-

scribes the relative importance of collisional and radiative rates.

We can imagine two limiting cases: the “high density” case in which (A21/ncolliderP21) ≪ 1 and

the “low density” case. In the high density case we recover the LTE distribution, the Boltzmann

distribution at the kinetic temperature. In the low density case we get

n2

n1

=
ncolliderP21

A21

× (LTE value for Tk)(24) (24)

which is clearly much smaller than the LTE value. Physically, the reason is simple: in LTE, upward

collisions are balanced by downward collisions, which leads to the LTE distribution. But in the

low density case, the downward radiative rate is very much greater than the collisional rate—

there is no time for a downward collision to occur. Each upward collision is followed immediately

by a downward radiative transition, so atoms remain in the upper state only a very short time.

Consequently, the population of state 2 is very small.


