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3.3. Photon emission rates. In general, the number of photons emitted per second per cm−3

(note: per unit volume, not per emitting particle) by the spontaneous emission process is

dN

dt
= n2A21 (25)

To relate this to the total abundance of the atoms, we must express n2 in terms of ntot, the total

volume density of the atoms; ntot = n1 + n2. We have already calculated the ratio n2/n1 and can

write

n2 =
ntot

1 + (n1/n2)
(26)

Consider dN/dt for the high- and low-density cases. In the high-density case, n1/n2 is given

by the Boltzmann distribution so we get

dN

dt
=

ntotA21

1 + g1
g2

exp(E21/kTk)
(LTE CASE) (27)

Note that dN/dt is (1) linearly proportional to the total volume density; (2) proportional to A21;

and, aside from these, depends only on temperature Tk. Because N is the number per unit volume,

the number of photons emitted is proportional to ntot, as we might expect.

The low-density limit is completely different. Here, n2/n1 ≪ 1 so we can take ntot = n1 which

gives

dN

dt
= ntotncolliderP

coll
12 (LOW −DENSITY LIMIT) (28)

or

dN

dt
= ntotncolliderP

coll
21

g2
g1

exp(−E21/kTk) (29)

As we shall see, in many cases ncollider ∝ ntot. Thus dN/dt is (1) proportional to the square

of the total volume density; (2) independent of A21 (!); and, aside from these, depends only on

temperature Tk. Note that N is proportional not to ntot but to its square. Furthermore, the

photon emission rate is independent of the Einstein A, and this fact may be surprising. However,

the interpretation is simple: in the low-density limit, every upwards collisional excitation is followed

by a spontaneous transition. Thus the number of photons emitted is equal to the number of upwards

collisional transitions. In fact, we can write equation (29) as
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dN

dt
= n1ncolliderP

coll
12 = Rcoll

12 (30)

4. HII Regions.

4.1. Ionization equilibrium. HII means H+—ionized hydrogen. We want the ratio of ionized to

neutral Hydrogen, nHII/nHI . In LTE, this is given by the Saha equation. We don’t have LTE, so

instead we must use use statistical equilibrium. Take state 2 as ionized, state 1 as neutral. Then,

as before,

nHII

nHI
=

n2

n1
=

R12

R21
(31)

R12 is the ionization rate. There are two possible processes: collisions and radiation. Radi-

ation is stronger by a factor of order 1010; the photons come from the central star. R21 is the

recombination rate; recombination occurs by the process

e+ p → HI + photon (32)

The ionization rate (per H atom) is

R12 =

∫

∞

ν(IP )

4πJν
hν

sνdν (33)

Here the first factor, 4πJν
hν , is the number of photons/sec-cm2; sν is the cross section for ionization

by a single photon; and the integral is carried out over all photons able to ionize the atom. We can

write this in a bit simpler form by approximating the integral:

R12 = 〈
Nu

4πD2
〉〈sν〉 (34a)

where Nu is the total number of ionizing photons emitted per second from the star, D is the distance

from the star, and the symbols 〈〉 denote averages over frequency. For HI, the cross section is roughly

sν = 6.5× 10−18

(

ν(IP )

ν

)3

cm2 (34b)

This varies rapidly with frequency, so the 〈〉 process will be just an approximation. For even the

hottest stars we are in the Wein portion of the blackbody curve, so there aren’t very many photons

with energies that vastly exceed the ionization potential of hydrogen; so let’s take 〈(ν(IP )/ν)3 =

1/6.5 for convenience so that 〈sν〉 = 1.0× 10−18 cm2. Values for Nu can be found in the handout.

For an O5 star, Nu ∼ 1050 sec−1. A typical distance is 1 pc = 3.1 × 1018 cm. This gives, for a
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typical ionization rate, R12 ∼ 10−6 sec −1. It takes about 106 seconds—about 1 week—for a typical

H atom in an HII region to be ionized.

The recombination rate per HII ion (proton) is

R21 = ne〈σvth〉 (34c)

where 〈σvth〉 ≈ 2.7 × 10−13T−0.7
4 cm3 sec−1 is the usual average of cross section over velocity (see

equation (9), week 1). (T4 is temperature in units of 104 K). In an HII region, most of the electrons

come from ionization of HI, so that ne = nHII . Typically, T4 = 1 so R21 ≈ ne2.7× 10−13 s−1. For

a typical HII region ne ∼ 103 cm−3, so R21 ∼ 3 × 10−10: it takes about 100 years for a proton to

recombine with an electron. This makes the degree of ionization very high!

nHI

nHII
=

R21

R12
∼

3× 10−10

10−6
≈ 3× 10−4 (35)

4.2. Sizes of HII Regions. To get the size, we can apply the concept of statistical equilibrium

not to just a single cm3 but, rather, to the whole HII region:

Recombination rate in whole HII region = Ionization rate in whole HII region (36)

The recombination rate in the whole HII region is just the rate per unit volume multiplied by the

HII region volume. The recombination rate per unit volume is from equation (34c and following

text [or equation (9), week 1]), multiplied by nHII (which is equal to ne):

Recombination rate in whole HII region =
4πR3

HII

3
n2
eR21 ≈

4πR3
HII

3
n2
e2.7× 10−13T−0.7

4 sec−1

(37)

The ionization rate in the whole HII region is just Nu (!). Thus the size is just given by solving

Nu =
4πR3

HII

3
n2
e2.7× 10−13T−0.7

4 (38)

Note that RHII ∝ N
1/3
u n

−2/3
e .

4.3. Intensity of recombination lines and IR emission. When the atoms recombine they emit

photons as the electrons descend own the energy level ladder. Transitions down to level 1 emit UV

photons and are called the “Lyman series” lines. Transitions down to level 2 emit optical photons

and are called “H lines”; the 3-2 line is called the Hα line and the 4-2 line the Hβ line, for example.
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Transitions down to level 3 emit in the infrared. Astronomers observe all of these lines, and many

more.

To calculate the intensity of the Hα line we simply need to know the fraction of recombinations

that end up yielding this transition. For Hα this fraction is just about 0.5. For Hβ the fraction is

about 0.11.

The Lyman series lines are more complicated. First, realize that even though the HII region is

highly ionized, it does nevertheless contain some HI atoms. And the lion’s share of these are in the

n = 1 state, the ground state. This makes the optical depth of the Lyman series lines enormous.

A Lyman series photon cannot move very far before exciting another atom up to the n = 2 state.

The photon is trapped inside the HII region. Eventually all electrons end up in the n = 2 state,

trying to emit a Lα photon (n = 2 − 1). Such photons cannot leave the HII region. They suffer

one of two fates: about 30% end up in the “two-photon” process, in which a virtual, temporary

quantum state appears whose energy lies between those of the n = 1 and n = 2 states; the electron

makes a transition from the n = 2 state to this virtual state, then from the virtual state to the

n = 1 state, emitting two photons in the process. The remaining ∼ 70% of the Lα photons hit dust

grains, which heat up and then emit as solid bodies in the infrared. This makes HII regions very

bright infrared emitters. The infrared power emitted by these grains is:

IR luminosity ≈ 0.7× Recombination rate in whole HII region× Energy of Lα photon (39a)

or

IR luminosity ≈ 0.7×Nu × 10.2 ev sec−1 (39b)

4.4. Temperatures of HII regions. To get temperature, we equate heat input (denoted nΓ;

units erg cm−3 sec−1) and heat output (denoted n2Λ; same units). (Note: These rates are per unit

volume. Heat input normally comes from the interaction between an externally-generated photon

field and the particles, so is proportional to the first power of volume density; heat output normally

arises from two-body collisional processes, so is proportional to the second power of volume density.

This explains the convention used here involving the differing powers of volume density for heating

and cooling. However, in many circumstances these rates have different dependencies on volume

densities. Examples include heating in HII regions, heating by mechanical means such as shocks,

and cooling in optically thick media.) Both heating and cooling depend on T .

nΓ(T ) = n2Λ(T ) (40)

Energy gain comes from the kinetic energy of electrons injected by the photoionization process.
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It is like equation (33) (the ionization rate) times the energy injected per ionization (which is just

the excess of energy over that required to just ionize the atom):

nΓ(Tk) = nHI

∫

∞

ν(IP )

4πJν
hν

sν(hν − hν(IP ))dν (41)

and we can replace the integral with frequency-averaged values, as in equation (34a):

nΓ(Tk) = nHI〈
Nu

4πD2
〉〈s〉〈(hν − hν(IP ))〉 = nHIR12〈(hν − hν(IP ))〉 (42)

But we realize that, from ionization equilibrium, nHIR12 is the total recombination rate per unit

volume, which is equal to the total ionization rate per unit volume, so

nΓ(Tk) = Recombination rate per volume× 〈(hν − hν(IP ))〉 (43)

Realize that the factor 〈(hν−hν(IP ))〉 depends only on the temperature of the star T∗. In fact, an

approximate calculation gives 〈(hν − hν(IP ))〉 ≈ 1.4kT∗. Thus we can write (from equation (34c)

and the following text)

nΓ(Tk) ≈ n2
e3.8× 10−13T−0.7

4 kT∗ (44)

Energy loss comes from two processes: one, when an electron recombines with a proton, its

kinetic energy is removed from the gas; and two, the free electrons collide with protons and emit

“free-free” radiation. In the first process the power loss per unit volume is (recombination rate)

×3
2kTk (each recombination removes the average thermally energy [actually, it removes a bit less

because the recombination cross section increases with decreasing electron velocity]). The free-free

emission process roughly doubles the power loss rate. Together, the two loss processes give

Λ(Tk) ≈ n2
e2.9× 10−13T−0.7

4 kTk (45)

Equating (44) and (45) gives

Tk ≈ 1.3T∗ (46)

This answer is wrong! Not because we’ve goofed; rather, because it doesn’t match observations. It

predicts that HII regions have temperatures comparable to the surface temperatures of the central

stars. In fact, though, their temperatures are much lower, typically 8000 K.
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4.5. Cooling by heavy elements. We have included cooling by H, but have neglected other

cooling processes. More important than H cooling is heavy element cooling. To understand this

we need to understand the energy level diagrams of heavy elements.

4.5.1. Spectroscopy of multielectron atoms.

Simplest example: the H-like atoms with one electron in p shell. Example: Li. Lowest n for p

shell is n = 2 (n = 1 is taken by the two electrons that fill the s shell). Energy depends not only

on n but also on l.

With > 1 electron in p shell we must vectorially add the l and s of the p-shell electrons to get

the total angular momentum L and the spin S. L̄ = Σl̄; S̄ = Σs̄. The total angular momentum

J̄ = L̄+ S̄. Thus for single values of L and S we get several J ’s: J = L+ S,L+ S − 1, . . . , L− S.

For L and S constant, the different energies for the various J ’s are closely spaced and corre-

spond to IR wavelengths. The small splittings are known as “fine structure” and a single set of

such closely-spaced levels is known as a “term.” If levels have different values of L and S, then the

energy differences usually correspond to optical or UV wavelengths. The complete spectroscopic

designation of a state involves specifying L, S, and J . L is normally designated by a letter: S

corresponds to L = 0, P to 1, D to 2. The spectroscopic designation is conventionally written

(example for L = 1)

2S+1PJ (47)

The degeneracy or statistical weight of a level is equal to gJ = 2J + 1. The statistical weight of a

term is the total number of sublevels, i.e. the sum of gJ over all values of J in the term.

For electron configurations of the form 1s22s22px, we can have only x ≤ 6. Energy level

diagrams for x = 1 and 5 are similar to each other; and for x = 2 and 4 are similar to each other.

Thus there are only three types of energy level diagram. One is exemplified by the H-like atom Li.

The other two are exemplified by OIII and OII (O++ and O+: x = 3 and 4, respectively). As we

shall see, x = 3-type ions are useful for measuring temperatures of the emitting gas and x = 2-types

for measuring densities.

The different types of transitions have different selection rules. There are several selection

rules for ordinary “electric dipole” transitions (in other words: selection rules for the integral in

equation (19) being nonzero). One of these is

(1): The electron configuration must change by one orbital (i.e., there must be a change in the

quantum number n).

None of the heavy-element transitions we will discuss satisfy this rule. Thus all of these

transitions are forbidden. There are other selection rules, and the Einstein A’s of the various

transitions decrease with the number of selection rules that are violated. The selection rules are
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(2): ∆J = 0,±1 (with the exception that J = 0 → 0 is strictly forbidden).

(3): ∆S = 0.

(4): ∆L = 0,±1 (and also required: ∆l = ±1, i.e. L changes because the angular momentum

of one of the electrons changes, not because the individual l’s remain constant but add up in a

different vectorial way).

It is also worth recalling (equation 17) that A ∝ ν3, so that low-frequency transitions are

intrinsically less probable than high-frequency ones.

4.5.2. Forbidden lines as densitometers and thermometers. (See text, pages 109-115). OIII has

three terms spaced by energies of order 2 ev (see text, Figure 3.5). In ascending order these are the
3P, the 1D, and the 1S terms (the first consists of three levels, the latter two of one level each). Call

these levels 1, 2, and 3 respectively. The collisional rate R12 ∝ exp−(E12/kTk) ≈ exp−(2.9/T4);

the collisional rate R13 ∝ exp−(E21 + E32)/kTk) = exp−(E31/kTk) = exp−(6.2/T4). For T4 ∼ 1,

R31 is very much more temperature sensitive than R21. Thus the ratio of line intensities I32/I21
varies very strongly with temperature. This makes this ratio a good temperature indicator. Note:

this is a good thermometer only in the low-density limit!

For OII, the ground state is a 4S3/2, a single level; the next higher term is a 2D term with

two levels that are closely spaced (see text, Figure 3.6). Thus there are two closely-spaced lines,

which are in the optical. In the low-density limit, the ratio of line intensities is the ratio of upwards

collision rates, which is g3/g2 = 2/3. In the high-density limit the levels are populated according to

LTE at temperature Tk and the ratio of line intensities is n3A31/n2A21 = 3.33; temperature doesn’t

enter because the levels are so close together that E/kTk ≪ 1. Thus the ratio of line intensities

depends on density. The range of density to which the intensity ratio is sensitive is ne ∼ 102 to 104

cm−3.

4.5.3. Temperatures of HII regions with heavy element cooling. To compute the cooling Λ(Tk)

in the low-density limit, we multiply the collisional excitation rate for electron-ion collisions from

equation (8) by the energy of the transition, because this is the amount of energy that leaves the

system when the photon is emitted. Thus for OIII,

Λ(Tk) = nOIIIneP12E12 (48)

Express nOIII = x
nOtot

ne
ne—in words, we assume that all O is OIII, take

nOtot

ne
equal to the cosmic

abundance of O/H (by number of atoms: equal to 6.3 × 10−4, use the fact that (because the H is

almost fully ionized) nH = ne, and let x be a correction factor (x must be less than one, but in fact

it isn’t much less than one) to account for the fact that these assumptions are not quite correct.

Then we can write
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Λ(Tk) = xn2
e6.1× 10−23 exp−(2.9/T4)

T
1/2
4

(49)

Compare this with the heating in equation (44). Note that both depend on the square of ne; this

is because we are n the low- density limit for cooling. Equating (49) and (44) gives

Tk,4 exp−(2.9/Tk,4) =
0.0084

x
T∗,4 (50)

Solving this rather messy equation gives temperatures of order 8000 K (Tk,4 ∼ 8). Tk increases, but

only very slowly, with T∗. Tk decreases with increasing x (in words: as you increase the abundance

of the coolant, the gas temperature drops).

Note: If you were to calculate the intensity of the OIII line, you would find that it is (sur-

prisingly?) independent of x. This is because we have assumed that OIII is the only coolant, and

because cooling equals heating, the OIII line intensity must equal the heating no matter what the

abundance of oxygen. In real life, the presence of other cooling lines that are less sensitive to

temperature (including the fine structure transitions in the 3P term of OIII itself) makes the OIII

optical line intensity decrease with increasing O abundance! The upshot of all this is that it is not

so easy to obtain the abundances of heavy elements from the intensities of their emission lines!


