
AY120A,B CHEAT-SHEET FOR SPHERICAL COORDINATETRANSFORMATIONCarl HeilesIn our never-ending attempt to make your life easier, we present you with the quikest of quiksummaries of spherial oordinate transformation with matrix tehniques. For example, you mightneed to point the telesope at some partiular position in the Galaxy. In other words, you need toonvert from Galati oordinates to altitude and azimuth. This involves three separate oordinatetransformations: Galati longitude and latitude to equatorial right asension and delination[(`; b)! (�; Æ)℄; to hour angle and delination [(�; Æ) ! (ha; Æ)℄; to azimuth and altitude [(ha; Æ) !(az; alt)℄. Or maybe you need to go all or partway in the the other diretion, i.e. [(az; alt)! [(�; Æ)℄or maybe just [(az; alt)! [(ha; Æ)℄.These are onversions among four spherial oordinate systems. Suh onversions involveall those ompliated ombinations of trig funtions (sigh). You an write down all these trigfuntions for the various possible transformation|twelve possibilities in all if you inlude goingboth diretions.But there is a muh easier, more elegant, and more politially orret way: using rotationmatries. In this method, you generate a vetor in the original oordinate system; onvert thevetor to another oordinate system by rotating the oordinates using matrix multipliation; andonvert the vetor to the angles of the new oordinate system.There are two big advantages with this method. First, you an apply several transformationsin suession by multiplying the rotation matries in suession, so you break the proess down intosingle transformations, eah with its own rotation matrix. Seond, it's easy to go \bakwards"|youjust use the inverse of the matrix.The method is general and an be applied to any oordinate transformation. Spherial oor-dinates are haraterized by two angles. One \goes around the z-axis"|it is like longitude on theearth. The other \goes up and down" and is like latitude on the earth. These angles are \longitude-like" and \latitude-like", and we'll denote them by long and lat. Thus, for Galati oordinates,` is the \longitude-like" long and b is the \latitude-like" lat; for equatorial oordinates, it's � (orha) and Æ; for terrestrial oordinates, it's az and alt.One more thing before we get into details. Our disussion is oriented towards astronomy, butthe method works for any type of spherial oordinate transformation. There is an exellent, shortdisussion of the general situation in Goldstein's Classial Mehanis, x4.4; we inlude a opy ofthese 3 pages as an attahment at the end.



{ 2 {1. ROTATION MATRICES: THE METHODTo restate the problem: we start with (long; lat) in one oordinate system and want to onvertto (long0; lat0) in some other oordinate system. Here's the presription:Step 1. First, onvert the angles to retangular oordinates. One would usually all these(x; y; z); here, to emphasize the vetor/matrix avor, we all them (x0; x1; x2) and denote the3-element vetor x. To aomplish this onversion:x0 = os(lat) os(long) ; (1a)x1 = os(lat) sin(long) ; (1b)x2 = sin(lat) : (1)The IDL ommands to aomplish this should be obvious, so we won't state them here; but re-member to onvert the arguments to radians (in IDL, onverting degrees to radians is most easilydone by multiplying by !dtor).Step 2. Apply the rotation matrix R (we'll disuss its de�nitions below):x0 = R � x : (2)In IDL, we'll use the IDL variable xp to represent x', and you do matrix multipliation with theoperator ##. . . xp = R##x : (3)Step 3. Convert the primed retangular oordinates to the new set of spherial oordinates(long0; lat0): long0 = tan�1�x01x00� ; (4a)lat0 = sin�1(x02) : (4b)To do these in IDL, where we'll write longp, latp:longp = atan(xp(1);xp(0)) (5a)latp = asin(xp(2)) ; (5b)



{ 3 {if you want to onvert their outputs to degrees, multiply by !radeg. IMPORTANT: writingatan(xp(1), xp(0)) instead of atan(xp(1)/xp(0)) ensures that the angle is given in the orretquadrant. See the IDL doumentation.That's it! If you want to \go bakwards", you just apply the matrix multipliations usingthe inverse matries. For rotation matries, the inverse is always equal to the transpose(!)1|symbolially for the matrix R, R�1 = RT. So to go from the primed system to the unprimed, youswith the primed and unprimed in equation (2) and use the inverse rotation matrixx = R�1 � x0 = RT � x0 : (6)and in IDL. . . x = invert(R)##xp = transpose(R)##xp : (7)2. ROTATION MATRICES: SPECIFICS FOR OUR PROBLEMOK, what are these rotation matries? We'll do you a big favor and tell you.2.1. (RA, DEC) to (HA, DEC)|any epoh.Converting from (�; Æ) ! (ha; Æ) keeps the delination the same and uses the relationshipha = LST � �. It is easiest to think of this in two steps, so we expressR(�;Æ)!(ha;Æ) = R(�;Æ)!(ha;Æ);2 �R(�;Æ)!(ha;Æ);1 : (8)First, we rotate around the equatorial pole by an angle equal to the Loal Sidereal Time (LST ),whih does �! (�� LST ):R(�;Æ)!(ha;Æ);1 = 264 os(LST ) sin(LST ) 0� sin(LST ) os(LST ) 00 0 1 375 : (9a)1If you don't believe this, hek on the R's below in x2!



{ 4 {Next, the ha and � go in opposite diretions, whih is equivalent to onverting from the originalleft-handed to a right-handed oordinate system, so the seond step is just to perform this reversal:R(�;Æ)!(ha;Æ);2 = 264 1 0 00 �1 00 0 1 375 : (9b)The full rotation matrix is the matrix produt R(�;Æ)!(ha;Æ);2�R(�;Æ)!(ha;Æ);1. Note the order! Ap-plying R(�;Æ)!(ha;Æ);2 at the beginning in the matrix produt means that it operates last on thevetor x, whih is what we want. So we have as the produt. . .R(�;Æ)!(ha;Æ) = 264 os(LST ) sin(LST ) 0sin(LST ) � os(LST ) 00 0 1 375 : (10)2.2. (HA, DEC) to (AZIMUTH, ALTITUDE).Beause (ha; Æ) are Earth-based oordinates, this onversion depends only on your terrestriallatitude �: R(ha;Æ)!(az;alt) = 264 � sin� 0 os�0 �1 0os� 0 sin� 375 : (11)2.3. EQUATORIAL to GALACTIC.
R(�;Æ)1950!(`;b) = 264 �0:066989 �0:872756 �0:4835390:492728 �0:450347 0:744585�0:867601 �0:188375 0:460200 375 : (12a)This is from Green's Spherial Astronomy, hapter 14.6, problem 14.6 (answers in bak of book).We should've made you derive this, but we're softies. You really should at least glane at Green'shapter 2.7, whih de�nes Galati oordinates. In truth, the preession of the equatorial oordinatesystem makes this matrix a funtion of time: the equatorial oordinates move around the sky, but



{ 5 {the Galati ones do not. Preession amounts to nearly an arminute per year! In priniple, youshould derive the matrix for the urrent epoh. In pratie, you may not need suh high auray.Better than the 1950 version are the numbers for epoh 2000, whih are in Green's equation (14.55);epoh 2000 is lots loser to the present than is epoh 1950:R(�;Æ)2000!(`;b) = 264 �0:054876 �0:873437 �0:4838350:494109 �0:444830 0:746982�0:867666 �0:198076 0:455984 375 : (12b)
2.4. Preession|onverting equatorial between epohs.We won't need these for the lab ourse, but we give you the info for the sake of ompleteness.Generating the rotation matrix for preession is a bit tedious and we won't give the expliit formulaehere. They are in Green's book. The elements of the matrix are in equation (9.31). These elementsontain angles, whih depend on time as in equation (9.23) if you are onverting from epoh2000 to some other epoh. Preession isn't all there is; for preision exeeding � 1000 you alsoneed to aount for nutation of the Earth, whih has a random omponent and is not ompletelypreditable. For the omplete story, see Green's hapter 9 and The Astronomial Almana 1998,pages B39-B43|for interested parties only!3. DOING ALL THIS IN IDLObviously, all this stu� is simple in IDL, whih deals easily with matries. Before beginning,though, a autionary note about 2-D arrays in IDL:3.1. A CRUCIAL PRELIMINARY: 2-D arrays in IDL.In a omputer, a multidimensional data set an be indexed in two ways, the olumn-major androw-major formats. IDL uses the row-major format, as does Fortran; the other major language, C,uses olumn-major. Suppose you have a 2 � 2 matrix alled A. In IDL's row-major format, whenyou type [print, A℄ IDL prints " A0;0 A1;0A0;1 A1;1 # ; (13a)



{ 6 {whih is di�erent from what you are used to seeing in standard matrix notation whih is theolumn-major format " A0;0 A0;1A1;0 A1;1 # : (13b)In this writeup, we are de�ning matries suh that, when displayed in a standard IDL print state-ment, they look orret. For example, in equation (12b), the upper right-hand element �0:483835is R2;0.If you want to be a purist and de�ne the matries in the standard manner, that is with thelower left-hand element �0:483835 being R0;2 instead of R2;0, go ahead and do so. You then needto do two things. First, if you want to see the matrix displayed in the usual way, then print itstranspose by typing [print, transpose(A)℄. Seond, in all our IDL matrix equations, replae ## by#. Why does IDL do this nonstandard thing? It's beause it's more straightforward for imageproessing, in whih traditionally the images are sanned row-by-row (as in a TV set) instead ofolumn-by-olumn. And IDL's origins are image proessing, not matrix math.3.2. Try the following examples in IDL.TestR(ha;Æ)!(az;alt), going both forwards and bakwards. For an observatory at latitude 41:36Æ,(az; alt) = (137:60Æ ; 32:43Æ) transforms to (ha; Æ) = (325:05sÆ;�6:52Æ). Hour angle is usually givenin hours using sexagesimal notation: ha = 21h40m12s.) See the IDL funtions sixty and ten togo bak and forth between deimal and sexagesimal notations.Test R(�;Æ)!(ha;Æ) by making up your own example, using the fat that ha = LST � �.Test R(�;Æ)1950!(`;b) for the Crab Nebula. The Crab has 1950 equatorial oordinates (�; Æ) =(05h31m:5; 21Æ590) and Galati oordinates (`; b) = (184Æ330;�5Æ470).Finally, put them all together and make sure that works, too. For all of these, make sure youknow how to go bakwards! For example, suppose you want to onvert (az; alt)! (�; Æ). You needto �rst apply R�1(ha;Æ)!(az;alt) and then R�1(�;Æ)!(ha;Æ). So the full rotation matrix in this ase is. . .R(az;alt)!(�;Æ) = R�1(�;Æ)!(ha;Æ) �R�1(ha;Æ)!(az;alt) (14)Again, note the order! Applying R�1(�;Æ)!(ha;Æ) at the beginning in the matrix produt means thatit operates last on the vetor x.
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