
LEAST-SQUARES LITE FOR THE BUDDING AFICIONADO:

ART AND PRACTICE

c©Carl Heiles April 15, 2006

In our never-ending attempt to make your life easier, we present you with this highly in-

structive, time-saving, and labor-saving informative document! Here we give heuristic derivations,

discussions, examples, and the prescription for doing least-squares the easy way using matrix tech-

niques generally, and specifically in IDL. This prescription is given as an example in §4, and the

power-user can skip the details and go directly there.

This document contains selected sections from the more complete LEAST-SQUARES AND

CHI-SQUARE FOR THE BUDDING AFICIONADO: ART AND PRACTICE, which also covers

advanced topics including covariance in chi-square fitting, singular value decomposition, median

and Minimum Weighted Absolute Residuals Sum (MWARS) fitting, and fitting when both x and

y have uncertainties. The full document runs to 62 pages, which is a little intimidating for the

novice. We occasionally refer to the books Bevington and Robinson (1992; BR), Cowan (1998),

Press et al. (2001; Numerical Recipes, NR) and Taylor (1997; T97), and we update the notation to

partially conform with NR.

We begin with least-squares in the classic sense, meaning we minimize the sum of squares

instead of minimizing χ2. In astronomy, more often than not you don’t have an independent

assessment of the intrinsic uncertainty in the data, which means you cannot evaluate χ2, and the

least squares approach is the only option. However, often in astronomy you do want to weight

observations differently, e.g. because of integration time, and this requires an approach similar to

the χ2 one. In later sections we generalize to the χ2 and this other weighted-observations case.

Contents

0 LEAST-SQUARES FITTING FOR TWO PARAMETERS, AS WITH A STRAIGHT

LINE. 3

0.1 The closed-form expressions for a straight-line fit . 3

0.2 Better is the following generalized notation. 3

1 LEAST-SQUARES FITTING FOR MANY PARAMETERS, AS WITH A CU-

BIC 4

2 FAR, FAR BEST AND EASIEST: MATRIX ALGEBRA 5

3 UNCERTAINTIES IN THE DERIVED COEFFICIENTS 7

– 2 –

4 A NUMERICAL EXAMPLE AND ITS SOLUTION IN IDL 9

4.1 Generation of the numerical example . 9

4.2 Solution of the Numerical Example in IDL . 10

4.3 Discussion of the numerical example . 12

5 THE COVARIANCE MATRIX AND ITS NORMALIZED COUNTERPART 12

5.1 Definition of the normalized covariance (or correlation) matrix 12

5.2 The covariance in our numerical example . 14

6 REJECTING BAD DATAPOINTS I.: CHAUVENET’S CRITERION 16

7 NONLINEAR LEAST SQUARES 18

8 CHI-SQUARE FITTING AND WEIGHTED FITTING: DISCUSSION IGNOR-

ING COVARIANCE 21

8.1 The weighted mean: the simplest chi-square fit . 22

8.2 The multivariate chi-square fit . 24

8.3 Which equation—8.9 or 8.10? . 26

8.4 Datapoints with known relative but unknown absolute dispersions 26

8.5 Persnickety Diatribe on Choosing σm . 27

8.5.1 Choosing and correcting σm . 27

8.5.2 When you’re using equation 8.9. 28

8.5.3 Think about your results! . 28

8.5.4 When your measurements are correlated. 28

9 BRUTE FORCE CHI-SQUARE AND THE CURVATURE MATRIX 29

9.1 Parameter Uncertainties in Brute Force chi-square Fitting 29

10 NOTATION COMPARISON WITH NUMERICAL RECIPES 30

– 3 –

0. LEAST-SQUARES FITTING FOR TWO PARAMETERS, AS WITH A

STRAIGHT LINE.

0.1. The closed-form expressions for a straight-line fit

First consider the least-squares fit to a straight line. Let ym be the mth measurement of the

observed quantity (in this example, ym is zenith distance; tm be the time of the mth measurement;

M = the total number of observations, i.e. m runs from 0 to M − 1. Remember that in the least-

squares technique, quantities such as tm are regarded to be known with high accuracy while the

quantity ym has uncertainties in its measurement.

We expect the zenith distance ym to change linearly with time as follows:

A+Btm = ym . (0.1)

Given this, one does the maximum likelihood (ML) estimate assuming Gaussian statistics. When

all measurements have the same intrinsic uncertainty, this is the same as looking for the solution

that minimizes the sum of the squares of the residuals (which we will define later). This leads to

the pair of equations (Taylor 8.8, 8.9), called the normal equations

AN +B
∑

tm =
∑

ym (0.2a)

A
∑

tm +B
∑

t2m =
∑

tmym . (0.2b)

Two equations and two unknowns—easy to solve! The closed-form equations for (A,B) are Taylor’s

equations 8.10 to 8.12.

0.2. Better is the following generalized notation.

We want a way to generalize this approach to include any functional dependence on t and even

other variables, and to have an arbitrarily large number of unknown coefficients instead of just the

two (A,B). This is very easy using matrix math. We will ease into this matrix technique gently,

by first carrying through an intermediate stage of notation.

First generalize the straight-line fit slightly by having two functional dependences instead

of one. We have something other than the time tm; call it sm. For example, we could have

sm = cos(tm) or sm = t2m; or we could have sm = xm, where xm is the position from which the

observation was taken. To correspond to equation 0.1, sm = 1. Then we rewrite equation 0.1 to

include this extra dependence

– 4 –

Asm +Btm = ym . (0.3)

There are still only two unknown parameters, so this is an almost trivial generalization; later we’ll

generalize to more parameters.

We have M equations like equation 0.3, one for each measurement. They are known as the

equations of condition because they are the equations that specify the theoretical model to which

we are fitting the data. There are M equations of condition and only two unknowns (A and B).

This is too many equations! We have to end up with a system in which the number of equations is

equal to the number of unknowns.

To accomplish this, from equation 0.3 we form the normal equations. The number of normal

equations is equal to the number of unknowns, so in this case we will have two. We could carry

through the same ML derivation to derive equations equivalent to equation 0.2; the result is

A
∑

s2m +B
∑

smtm =
∑

smym (0.4a)

A
∑

smtm +B
∑

t2m =
∑

tmym . (0.4b)

We can rewrite these equations using the notation [st] =
∑

smtm, etc.:

A[s2] +B[st] = [sy] (0.5a)

A[st] +B[t2] = [ty] . (0.5b)

This is, of course, precisely analogous to equation 0.2. And now it’s clear how to generalize to more

parameters!

1. LEAST-SQUARES FITTING FOR MANY PARAMETERS, AS WITH A

CUBIC

With this notation it’s easy to generalize to more (N) unknowns: the method is obvious

because in each equation of condition (like equation 0.3) we simply add equivalent additional terms

such as Cum, Dvm, etc; and in the normal equations (equation 0.5) we have more products and

also more normal equations.

Let’s take an example with four unknowns (N = 4), which we will denote by A,B,C,D; this

would be like fitting a cubic. With N = 4 we need at least five datapoints (M = 5), so there must

be at least five equations of condition. The generalization of equation 0.4 is the M equations

– 5 –

Asm +Btm + Cum +Dvm = ym , (1.1)

with m = 0 → (M − 1). Again, the least-squares-fitting process assumes that the sm, tm, um, vm
are known with zero uncertainty; all of the uncertainties are in the measurements of ym. We then

form the four normal equations; the generalization of equation 0.5 written in matrix format is:




[ss] [st] [su] [sv]

[ts] [tt] [tu] [tv]

[us] [ut] [uu] [uv]

[vs] [vt] [vu] [vv]







A

B

C

D


 =




[sy]

[ty]

[uy]

[vy]


 (1.2)

The N ×N matrix on the left is symmetric. With N equations and N unknowns, you can actually

solve for A,B,C,D!

2. FAR, FAR BEST AND EASIEST: MATRIX ALGEBRA

The above equations are terribly cumbersome to solve in a computer code because they require

lots of loops. However, it becomes trivial if we use matrices. Here we designate a matrix by

boldface type.

We illustrate the matrix method by carrying through the above N = 4 example, and we assume

that there are 5 independent measurements (M = 5). We first define the matrices

X =




s0 t0 u0 v0
s1 t1 u1 v1
s2 t2 u2 v2
s3 t3 u3 v3
s4 t4 u4 v4




(2.1a)

a =




A

B

C

D


 (2.1b)

– 6 –

Y =




y0
y1
y2
y3
y4




(2.1c)

so, in matrix form, the equations of condition (equation 1.1) reduce to the single matrix equation

X · a = Y . (2.2)

The notation for these equations corresponds to NR’s. We write them with subscripts σ to empha-

size that they are calculated without dividing by σmeas, i.e. that we are doing least squares instead

of chi-square fitting. For chi-square fitting, see §8 and ??.

Our matrixX corresponds to NR’s “design matrix”A of Figure 15.4.1, except that our elements

are not divided by σmeas,m, and the matrix equation of condition (equation 2.2) is identical to the

expression inside the square brackets of NR’s equation 15.4.6. The differences arise because here

we are discussing least-squares fitting instead of chi-square fitting, i.e. we have omitted the factors

involving σmeas,m, the intrinsic measurement uncertainties (§8).

Again, there are more equations than unknowns so we can’t solve this matrix equation directly.

So next we form the normal equations from these matrices. In matrix form, the normal equations

(equation 1.2) reduce to the single equation

[α] · a = [β] , (2.3)

(NR equation 15.4.10), where

[α] = XT ·X (2.4a)

[β] = XT ·Y . (2.4b)

The matrix [α] is known as the curvature matrix because each element is twice the curvature of σ2

(or χ2) plotted against the corresponding product of variables.

The number of equations is equal to the number of unknowns, so the solution of the matrix

equation is easy—just rewrite it by multiplying both sides by the inverse of [α] (that is, by [α]−1),

which gives

– 7 –

a = [α]−1·[β] . (2.5)

All of these matrix operations are trivially easy in IDL (§4).

3. UNCERTAINTIES IN THE DERIVED COEFFICIENTS

How about the uncertainties in the derived quantities contained in the matrix a?

The first thing to do is derive the sample variance s2 (the square of standard deviation, or

mean error, or dispersion, etc) of the individual datapoints using the generalization of the usual

definition for a straight average of x, s2 = [
∑M−1

0 (xm − xm)2/(M − 1)]. The generalization is,

simply, to replace the M − 1 in the denominator by ν = M − N . In the straight-average case,

N = 1 so this fits. Here ν is known as the number of degrees of freedom and N , the number of

unknown coefficients, is known as the number of constraints. So we have

s2 =
1

M −N

M−1∑

m=0

(ym − ym)2 , (3.1)

where ym are the values for ym predicted by the derived quantities a. Note the difference: ym are

the observed values, while ym are the values predicted by the least-squares fit. The predicted values

are those that are computed from the derived coefficients A,B,C. . . The M quantities

δym = ym − ym (3.2)

are called the residuals or deviations from the fit.

It’s worth reiterating some essentials about s2, and in particular the denominator (M − N).

First consider the case of a single-parameter fit, e.g. N = 1. Then we cannot possibly derive

a sample variance from only one measurement M = 1; but we can from two M = 2. So the

denominator makes sense from that standpoint. The same goes for N > 1.

Next consider the effect of using (M − N) in the denominator: it increases s2 by the ratio
M

M−N over what you’d get if you just took a straight average and used M . This compensates for

the fact that you are subtracting ym, which is derived from the data, instead of the truly correct

value y∗. (In formal statistical language, y∗ is the mean of the parent population from which your

set of measurements is drawn.) If you used the truly correct value y∗, then the sum would be larger

than when using ym. The use of M − N in the denominator compensates for this larger value in

exactly the right way: the expectation value E(s2) for a large number of experiments is precisely

equal to the normal variance σ2, which you’d get by using [y∗ and M] instead of [ym and (M −N)]

in equation 3.2; see Cowan equations 5.9 and 5.10. So s2 is, in fact, exactly the number we want:

– 8 –

an unbiased estimate of the true variance of our sample. Why not use [y∗ and M] in equation 3.2?

The reason is obvious: we don’t know y∗! (If we did, we wouldn’t be doing this analysis!)

It’s easy to calculate the ym with matrices. First define the matrix Y that contains these

values:

Y =




y0
y1
y2
y3
y4




(3.3)

Calculating Y is simple:

Y = X · a . (3.4)

Note that X is already defined (equation 2.1) and a was solved for in equation 2.5. It’s convenient

to define the residual matrix

δY = Y −Y (3.5)

so we can write

s2 =
1

M −N
δYT · δY . (3.6)

This is the sample variance of the datapoints, not the variances in the derived coefficients.

We can obtain these as before, by generalizing the results from the two-parameter case like the

straight-line fit discussed in §0. We won’t go through the derivation here; you can find it in Taylor

§8.4 and equation 8.16, 8.17. The result is

sa
2 = s2diag{[α]−1} . (3.7)

Or, to put it simply in words: to get the variance of coefficient n in the matrix a, multiply s2 by

the nth diagonal element of [α]−1.

Although the above equation for sa
2 is correct, there is more to the story because of covariances,

which are the off-diagonal elements. We return to this topic in §5 and §??.

– 9 –

4. A NUMERICAL EXAMPLE AND ITS SOLUTION IN IDL

If the following sounds like Greek to you, take a look at §2 and 3.

4.1. Generation of the numerical example

Suppose that we make four measurements of the angle y and we want to fit to a parabolic

function in time t. In the notation of equation 1.1, s would be unity, t the time, and u the

time squared, so the number of unknowns is three (N = 3). Because there are four independent

measurements (M = 4) the subscripts run from m = 0 → 3. Suppose that the four values of time

are 5, 7, 9, 11.

Fig. 4.1.— Our numerical example. Stars are the four datapoints; the solid line is the fit. We

perform two fits: one uses the original definition of time; the other uses (time−8), in effect moving

the y-axis to the dashed line. The two fits give the same line but the coefficients and their errors

differ greatly.

First we create the matrix X in IDL

X = fltarr(N,M) = fltarr(3,4) (4.1)

– 10 –

and then we populate it with numbers. In your own work, you would normally do this by reading

a data file and transferring the numbers to the matrix using IDL commands; to work through this

example, you might manually type them in. After populating the matrix, in direct correspondence

with equation 2.1a we have sm = 1, tm = timem, um = time2m:

X =




1 5 25

1 7 49

1 9 81

1 11 121


 . (4.2a)

Suppose that the four measured values of y are (equation 2.1c)

Y =




142

168

211

251


 . (4.3a)

Figure 4.1 shows the datapoints, together with the fitted curve.

One word of caution here: in IDL, to get these into a column matrix, which is how we’ve

treated Y above, you have to define Y as a two-dimensional array because the second dimension

represents the column. When working in IDL it’s more convenient to define a row vector, which

has only one dimension; in IDL you do this by defining Y = [142, 168, 211, 251]; you can make it

into the necessary column vector by taking its transpose, i.e. Y = transpose(Y).

4.2. Solution of the Numerical Example in IDL

In IDL we calculate the normal equation matrices and denote the [α] in equation 2.4a by XX:

XX = transpose(X)##X , (4.4a)

and we denote the [β] in equation 2.4b by XY:

XY = transpose(X)##Y . (4.4b)

In IDL we take the inverse of [α] (same as XX) by

– 11 –

XXI = invert(XX) . (4.5)

The least-squares fitted quantities are in the matrix a (equation 2.5), which we obtain in IDL

with

a = XXI ## XY . (4.6)

In IDL we denote the matrix of predicted values ym by YBAR, which is

YBAR = X ## a , (4.7)

and we can also define the residuals in Y as

DELY = Y −YBAR . (4.8)

In IDL we denote s2 in equations 3.1 and 3.6 by s sq and write

s sq = transpose(DELY)##DELY/(M −N) , (4.9a)

or

s sq = total(DELY ∧ 2)/(M −N) . (4.9b)

It is always a good idea to plot all three quantities (the measured valuesY, the fitted valuesYBAR,

and the residuals DELY) to make sure your fit looks reasonable and to check for bad datapoints.

To get the error in the derived coefficients we need a way to select the diagonal elements of a

matrix. Obviously, any N ×N matrix has N diagonal elements; a convenient way to get them is

diag elements of XXI = XXI[(N+ 1) ∗ indgen(N)] . (4.10)

In IDL, we define the variances of the N derived coefficients by vardc (think of “variances of

derived coefficients”). You can get this as in equation 3.7 from1

1If you used equation 4.9a instead of 4.9b, then IDL considers s sq an array and you need to use a # instead of a

∗ in this equation.

– 12 –

vardc = s sq ∗XXI[(N+ 1) ∗ indgen(N)] . (4.11)

4.3. Discussion of the numerical example

For this numerical example, the solution (the array of derived coefficients) is

a =




96.6250

4.5000

0.8750


 (4.12a)

and the errors in the derived coefficients [the square root of the σ2’s of the derived coefficients, i.e.

[σ2
n]

1/2 or, in IDL, sqrt(vardc) in equations 4.11] are:

σA =




34.012

9.000

0.5590


 . (4.12b)

These results look horrible: the uncertainties are large fractions of the derived coefficients,

The reason: we have specifically chosen an example with terrible covariance. And the great

thing is this can be fixed easily (at least in this case—certainly not always), without taking more

data!

5. THE COVARIANCE MATRIX AND ITS NORMALIZED COUNTERPART

First we provide a general discussion, then we apply it to the above numerical example.

5.1. Definition of the normalized covariance (or correlation) matrix

The variances in the derived coefficients are obtained from the diagonal elements of XXI. The

off-diagonal elements represent the covariances between the derived coefficients. Covariance means,

specifically, the degree to which the uncertainty in one derived coefficient affects the uncertainty in

another derived coefficient.

Because the covariance matrix elements relate pairwise to the various coefficients, the units of

the matrix elements are all different. This makes it convenient to reduce all the matrix elements

– 13 –

to a standard set of units—namely, no units at all. So before discussing the covariance matrix per

se, we first discuss its normalized counterpart.

The normalized covariance matrix2 ncov is derived from XXI by dividing each element by the

square root of the product of the corresponding diagonal elements. Let ncov be the normalized

covariance matrix; then

ncovik =
XXIik√

XXIii XXIkk
. (5.1)

This is the same normalization that one does with the Pearson linear correlation coefficient of two

variables. In fact, the elements of the normalized covariance matrix are the correlation coefficients.

So it makes sense to call this matrix the correlation matrix, and many people do. In IDL, you do

the following:

dc = XXI[(N+ 1) ∗ indgen(N)] (5.2a)

ncov = XXI/sqrt(dc##dc) . (5.2b)

In the above, dc##dc is an N × N matrix consisting of products of the diagonals of XXI, so

dividing XXI by sqrt(dc##dc) generates the normalized version.

Because ncov is a normalized covariance matrix, you might think that its non-normalized

parent is XXI—and you’d be almost right. For the least-squares case we are discussing, the true

covariance matrix C is3

C = s2 XXI . (5.3)

In ncov, the diagonal elements are all unity and the off-diagonal elements reflect the inter-

dependence of the derived coefficients on each other. The off-diagonal elements can range from

−1 → 1. Each matrix element is the correlation coefficient between the uncertainties of its two

parameters. In particular, suppose that the data happen to produce a coefficient that differs from

its true value by some positive number. If the normalized matrix element is negative, then the

other coefficient will tend to differ from its true value by a negative number.

Here’s a more detailed discussion of what the covariance means. Suppose you are least-squares

fitting for two derived coefficients (A0 and A1). When you do a least-squares fit to a set of data,

you are fitting one set of data out of a possible infinity of possible sets that you’d get by repeating

2It is a pleasure to thank Doug Finkbeiner for introducing me to this concept.

3For chi-square, you use σ
2
meas instead of s2; see §8.

– 14 –

the experiment, and your particular set of data happens to produce specific values of A0 and A1,

which differ from the true values (A∗
0, A

∗
1) by amounts δA0 and δA1. If their covariance is zero,

then in the infinity of data sets you’d find that δA0 is uncorrelated with δA1. But if it is nonzero,

these two quantities would be correlated.

A high covariance is bad because the derived variables depend on each other. For one, this

means that with noisy data power can be shared or passed from one parameter to/from its covariant

counterpart(s). As we shall see in §??, it also significantly influences the uncertainties in derived

coefficients. Often a high covariance results from a poor choice of functions that you are fitting or

even a bad choice of the zero point of the independent variable—as in our numerical example (see

the next subsection). And, as in that example, you can sometimes eliminate the bad covariance

by reformulating the problem—you don’t even need to take more data! The best reformulation

involves using a set of orthonormal functions. However, sometimes your interest is a specific set

of functions that are not orthogonal, and in such cases it makes no sense to convert to orthogonal

functions—because you just have to convert back again and do the error propagation after-the-fact

instead of letting the least-squares process do it for you.

5.2. The covariance in our numerical example

Apply equation 5.2 to obtain the covariance matrix for our numerical example:

ncov =




1 −.989848 .969717

−.989848 1 −.993808
.969717 −.993808 1


 . (5.4)

The off-diagonal elements are huge. This is the reason why our derived coefficients have such

large uncertainties. Note, however, that the fitted predicted fit is a good fit even with these large

uncertaintis.

In this seemingly innocuous example we have an excellent case of a poor choice of zero point

for the independent variable (the time). The reason is clear upon a bit of reflection. We are fitting

for y = A0 + A1t + A2t
2. The coefficient A0 is the y-intercept and A1 is the slope. Inspection of

Figure 4.1 makes it very clear that an error in the slope has a big effect on the y-intercept.

Now we retry the example, making the zero point of the time equal to the mean of all the

times, that is we set (timem = timem− 8). We get the same fitted line, but the derived coefficients

are completely different—and amazingly better! We get

– 15 –

A =




188.625

18.500

0.87500


 (5.5a)

σA =




3.58

1.00

0.559


 . (5.5b)

In redefining the origin of the independent variable, we have made the zero intercept completely

independent of the slope: changing the slope has no affect at all on the intercept. You can see this

from the normalized covariance matrix, which has become

ncov =




1 0 −0.78086881
0 1 0

−0.78086881 0 1


 , (5.6)

which is nice, but not perfect: Our step is partial because the second-order coefficient A2 affects

A0 because, over the range of [(time− 8) = −3→ +3], the quantity [A2 Σ(timem − 8)2] is always

positive and is thereby correlated with A0.

We could complete the process of orthogonalization by following the prescription in BR chapter

7.3, which discusses the general technique of orthogonalizing the functions in least-squares fitting.

The general case is a royal pain, analytically speaking, so much so that we won’t even carry it

through for our example. But for numerical work you accomplish the orthogonalization using

Singular Value Decomposition (SVD), which is of course trivial in IDL (§??).

For some particular cases, standard pre-defined functions are orthogonal. For example, if tm
is a set of uniformly spaced points between (−1 → 1) and you are fitting a polynomial, then the

appropriate orthogonal set is Legendre polynomials. This is good if your only goal is to represent

a bunch of points by a polynomial function, because the coefficients of low-order polynomials are

independent of the higher ones. However, it’s more work and, moreover, often you are interested in

the coefficients for specific functions that don’t happen to be orthogonal; in such cases, you should

just forge ahead.

But always look at the normalized covariance matrix. Suppose one pair of off-diagonal elements

departs significantly from zero. Then their corresponding functions are far from being orthogonal

and the variances of the derived coefficients will suffer as a result. You might be able to eliminate

one of the parameters to make the fit more robust. For example, suppose one function is t cos(t)

– 16 –

and the other is sin(t) cos(t). If the range of t is small, these two functions are indistinguishable

and have a large covariance; you should eliminate one from the fit. If the range of t is large, there

is no problem.

For further discussion of covariance, see §??. Also, you might also want to try out another

example in Taylor’s §8.5.

6. REJECTING BAD DATAPOINTS I.: CHAUVENET’S CRITERION

Least-squares fitting is derived from the maximum likelihood argument assuming the datapoint

residuals δym have a Gaussian pdf. This means that the errors are distributed as

p(δy;σ) =
1√
2πσ

e
−
(

δy2

2σ2

)

, (6.1)

where σ2 is the true variance of the datapoints, i.e. s2 in equation 3.1 (to be precise, s2 needs to

be averaged over many experiments).

More importantly, the probability of finding datapoints inside the limits ±∆y is

P(|δy|<∆y) =

∫ +∆y

−∆y
p(δy;σ)d(δy) = erf

(
∆y√
2σ

)
, (6.2)

where we use the commonly-defined error function erf(X) = 1√
π

∫ +X
−X e−x2

dx. A particularly im-

portant value is for ∆y = σ, for which

P(|δy|<σ) = 0.683 . (6.3)

If we have an experiment with M datapoints, then the number of datapoints we expect to lie

outside the interval ±∆y is

M(outside ∆y) = M

[
1− erf

(
∆y√
2σ

)]
. (6.4)

Chauvenet’s criterion simply says:

1. Find ∆y such that M(outside ∆y) = 0.5. This is given by

∆y

σ
=
√
2 erf−1

(
1− 1

2M

)
. (6.5)

– 17 –

This criterion leads to the numbers in the associated table, which is a moderately interesting

set of numbers. Many astronomers adopt 3σ, which is clearly inappropriate for large N !

Chauvenet’s criterion versus M

M ∆y
σ

100 2.81

1000 3.48

104 4.06

105 4.56

2. Discard all datapoints outside this range.

We offer the following important Comments:

• This assumes data are Gaussian-distributed. In real life this doesn’t often happen because

of “glitches”. Examples of glitches can be interference in radio astronomy, meteors in optical

astronomy, and cosmic rays on CCD chips. These glitches produce bad points that depart

from Gaussian statistics. They are often called outliers.

It is very important to get rid of the outliers because the least-squares process minimizes

the squares of the residuals. Outliers, being the points with the largest residuals, have a

disproportionately evil effect on the result.

On the other hand, if your data don’t follow Gaussian statistics as their intrinsic pdf, then

you should think twice before using least squares! (Like, maybe you should try the median

fitting discussed in §??.)

• You may wish to relax Chauvenet’s criterion by increasing the ∆x beyond which you discard

points. This is being conservative and, in the presence of some non-Gaussian statistics, not

a bad idea. But think about why you are doing this before you do it. Maybe the intrinsic

statistics aren’t Gaussian?

You should never make Chauvenet’s criterion more stringent by decreasing the ∆x beyond

which you discard points. This rule hardly needs elaboration: it means you are discarding

datapoints that follow the assumed pdf!

• Most statistics books (e.g. Taylor, BR) harp on the purity aspect. One extreme: don’t throw

out any datum without examining it from all aspects to see if discarding it is justified. The

other extreme: apply Chauvenet’s criterion, but do it only once and certainly not repeatedly.

Being real-life astronomers, our approach is different. There do exist outliers. They increase

the calculated value of σ. When you discard them, you are left with a more nearly perfect

– 18 –

approximation to Gaussian statistics and the new σ calculated therefrom will be smaller than

when including the outliers. Because the original σ was too large, there may be points that

should have been discarded that weren’t. So our approach is: repeatedly apply Chauvenet’s

criterion until it converges.

If it doesn’t converge, or if it discards an inordinately large number of datapoints, you’ve got

real problems and need to look at the situation from a global perspective.

• Many observers use the 3σ criterion: discard any points with residuals exceeding 3σ. This

is definitely not a good idea: the limit 3σ is Chauvenet’s criterion for M = 185 datapoints.

Very often M exceeds this, often by a lot.

• To apply Chauvenet’s criterion it’s most convenient to calculate the inverse error function.

For this, you have two choices. One (for sissies like myself), you can use inverf.pro from

my area ∼heiles/idl/gen . But the real he-man will want to learn about using a root-finding

algorithm such as Newton’s method (NR §9.4 and 9.6) together with the error function; both

procedures exist in IDL as newton and errorf. You at least ought to skim lightly some of

NR’s chapter 9 about root finding, because some day you’ll need it.

7. NONLINEAR LEAST SQUARES

The least-squares formulation requires that the data values depend linearly on the unknown

coefficients. For example, in equation 0.1, the unknown coefficients A and B enter linearly.

Suppose you have a nonlinear dependence, such as wanting to solve for A and B with equations

of condition that look like

sin(Atm) +Btm = ym . (7.1)

What do you do here? You linearize the process, using the following procedure.

First, assume trial values for A and B; call these A0 and B0. You should pick values that are

close to the correct ones. In our example you wouldn’t need to do this for B, but it’s easier to treat

all coefficients identically. These trial values produce predicted values y0,m:

sin(A0tm) +B0tm = y0,m . (7.2)

Subtract equation 7.2 from 7.1, and express the differences as derivatives. Letting δA = A − A0

and δB = B −B0, this gives

δA[tm cos(A0tm)] + δBtm = ym − y0,m . (7.3)

– 19 –

This is linear in (δA, δB) so you can solve for them using standard least squares. Increment the

original guessed values to calculate A0,new = A0 + δA and B0,new = B0 + δB, These won’t be

exact because higher derivatives (including cross derivatives) come into play, so you need to use

these new values to repeat the process. This is an iterative procedure and you keep going until the

changes become “small”. The generalization to an arbitrarily large number of unknown coefficients

is obvious.

We now offer some cautionary and practical remarks.

(0) In linear least squares, the curvature and covariance matrices are set by the values of

the independent variable, which here is denoted by t, and are independent of the datapoint values.

Here, the matrix elements change from one iteration to the next because they depend on the guessed

parameters, and sometimes they even depend on the datapoint values.

(1) Multiple minima: Nonlinear problems often have multiple minima in σ2. A classical case

is fitting multiple Gaussians to a spectral line profile. Gaussians are most definitely not orthogonal

functions and in some cases several solutions may give almost comparably good values of σ2, each

one being a local minimum. For example, for the case of two blended Gaussians, one can often

fit two narrow Gaussians or the combination of a wide and narrow Gaussian, the two fits giving

almost equal σ2. The lower of these is the real minimum but, given the existence of systematic

errors and such, not necessarily the best solution. The best solution is often determined by physical

considerations; in this case, for example, you might have physical reasons to fit a broad plus narrow

Gaussian, so you’d choose this one even if its σ2 weren’t the true minimum.

(2) The Initial Guess: When there are multiple minima, the one to which the solution

converges is influenced by your initial guess. To fully understand the range of possible solutions,

you should try different initial guesses and see what happens. If the solutions always converge to

the same answer, then you can have some confidence (but not full confidence) that the solution is

unique.

(3) Iterative stability: If your initial guess is too far from the true solution, then the

existence of higher derivatives means that the computed corrections can be too large and drive the

iterative solution into instability. It is often a good idea to multiply the derived correction factors

(δA and δB above) by a factor F less than unity, for example F = 0.5 or 0.75. This increases the

number of iterations required for convergence but often allows convergence instead of producing

instability.

(4) Convergence criteria: How do you know when the solution has converged? One way:

for each iteration, calculate the uncertainties in the derived coefficients. If the uncertainty exceeds

the correction, then you are getting close. An alternate way, which I usually use: if the fractional

correction (e.g. δA
A0

) decreases below some threshold, say 1%, you’re close (some parameters, such

as angles, need a threshold that is absolute instead of fractional). At this point, if you are using

F 6= 1, set F = 1, do a few more iterations, and you’re done.

– 20 –

(5) Numerical derivatives: Sometimes the equations of condition are so complicated that

taking the derivatives, as in obtaining equation 7.3, is a huge job and subject to mistakes. So you

can take numerical derivatives instead of analytic ones. Be careful, though; it’s safest to use double

precision and think a bit about numerical accuracy; take a look at NR’s section 5.7 on evaluating

numerical derivatives.

(6) Canned nonlinear least squares (particularly Levenberg-Marquardt, and var-

ious Gaussian fit routines): Packages like IDL offer canned nonlinear least squares routines.

They are designed to work well for a wide range of different problems. However, for the specific

problem at hand you can often do better by tailoring things (such as the factor F and convergence

criteria above). A good example is Gaussian fitting: IDL’s fitting program doesn’t converge for

multiple overlapping Gaussians, while for many of these cases the program that I wrote myself works

fine; and converseley, my program doesn’t work well for single Gaussians with a small number of

datapoints, in which case IDL’s GAUSSFIT is much better..

When convergence is slow or doesn’t occur because your functions are complicated, you might

wish to try the Levenberg-Marquardt method (NR §15.5); IDL function LMFIT. This technique

involves increasing the diagonal elements of the curvature matrix by a set of suitably chosen factors;

when you get close to the minimum, it resets these factors to unity. LM is the gold standard for

nonlinear least-squares fitting because it is supposed to converge faster than other methods. Because

of its sterling reputation, many people think it’s the panacea. How many times have I seen journal

articles saying that the LM method was used—as if that’s all one needs to know—but without

saying anything about the important stuff, such as how parameter space was explored to determine

uniqueness of the solution! See the discussion in NR. I’ve done lots of nonlinear fits and have never

had to resort to any tactic other than the simple, straightforward linearization process discussed

above.

(7) Be careful and LOOK at the solution before accepting it! These nonlinear problems

can produce surprising results, sometimes completely meaningless results. Don’t rely on them to

be automatic or foolproof!

(8) Reformulate! (?) Sometimes you can avoid all this by reformulating the problem. There

are two cases: the harmless case and the not-so-harmless case.

An example of the harmless case is fitting for the phase φ in the function y = cos(θ + φ).

This is definitely a nonlinear fit! But its easy to reformulate it in a linear fit using the usual trig

identities to write y = A cos θ−B sin θ, where B
A = tanφ. Solve for (A,B) using linear least squares,

calculate φ, and propagate the uncertainties.

An example of the not-so-harmless case is in NR’s §15.4 example: fit for (A,B) with equations

of condition ym = Ae−Bxm . They suggest linearizing by rewriting as log(ym) = C − Bxm, solving

for (B,C), and deriving A after-the-fact. This is not-so-harmless because you are applying a

nonlinear function to the observed values ym; thus the associated errors σmeas,m are also affected.

This means you have to do weighted fitting, which is discussed in §8 below. Suppose that A = 1,

– 21 –

your datapoints all have σmeas,m = 0.05, and the observed ym ranges from 0.05 to 1. The datapoint

with ym = 0.05 has a manageable σmeasm , but what is the corresponding value of σmeas,m for

log ym = log 0.05? It’s ill-defined and asymmetric about the central value. Or even, God forbid,

you have an observed ym that’s negative??? Even for ym not near zero, you need to calculate new

σmeas,m by error propagation; in this case, you need to reassign σ(log y) = d log y
dy σ(y) = σ(y)

y . This is

OK when ym is large enough so that the linear approximation is accurate, but if not the converted

noise becomes non-Gaussian.

You should regard your datapoints as sacrosanct and never apply any nonlinear function to

them.

8. CHI-SQUARE FITTING AND WEIGHTED FITTING: DISCUSSION

IGNORING COVARIANCE

In least-squares fitting, the derived parameters minimize the sum of squares of residuals as in

equation 3.1, which we repeat here:

s2 =
1

M −N

M−1∑

m=0

δy2m .

where the mth residual δym = (ym − ym). Chi-square fitting is similar except for two differences.

One, we divide each residual by its intrinsic measurement error σm; and two, we define χ2 as the

sum

χ2 =
M−1∑

m=0

δy2m
σ2
m

. (8.1a)

Along with χ2 goes the reduced chi square χ̂2 = χ2

M−N

χ̂2 =
1

M −N

M−1∑

m=0

δy2m
σ2
m

, (8.1b)

which is more directly analogous to the definition of s2.

Chi-square fitting is very much like our least-squares fitting except that we divide each dat-

apoint by its intrinsic measurement uncertainty σm. Thus, the reduced chi-square (χ̂2) is equal

to the ratio of the variance of the datapoint residuals (s2) to the adopted intrinsic measurement

variances (σ2
m). So it should be obvious that in chi-square fitting, you must know the measurement

uncertainties σm of the individual datapoints beforehand. If you want to give the various datapoints

– 22 –

weights based on something other than σm, then that is just like chi-square fitting except that you

can adopt an arbitrary scale factor for the uncertainties (section 8.5).

Chi-square fitting treats uncertainties of the derived parameters in a surprising way. Getting

the coefficient uncertainties with chi-square fitting is a tricky business because

1. With the standard treatments, the errors in the derived parameters don’t depend on the

residuals of the datapoints from the fit (!).

2. The errors in the derived parameters can depend on their mutual covariances. This discussion

requires a separate section, which we provide below in §??.

In this section we treat chi-square fitting ignoring covariance. We begin by illustrating the difference

between least squares and chi-square fitting by discussing the simplest chi-square fitting case of a

weighted mean; then we generalize to the multivariate chi-square fitting case.

8.1. The weighted mean: the simplest chi-square fit

First, recall the formulas for an ordinary unweighted average in which the value of each point

is ym and the residual of each point from the weighted mean is δym:

mean =

∑
ym

M
(8.2a)

s2 =

∑
δy2m

M − 1
(8.2b)

s2mean =
s2

M
=

∑
δy2m

M(M − 1)
, (8.2c)

where s2mean is the variance of the mean and s2 is the variance of the datapoints around the mean.

Recall that in this case the mean is the least-squares fit to the data, so to use least squares jargon we

can also describe smean as the error in the derived coefficient for this single-parameter least-squares

fit.

Now for a weighted average in which the weight of each point is wmeas,m = 1
σ2
m
. Applying

maximum likelihood, in an unweighted average the quantity that is minimized is
∑

δy2m; in a

weighted average the quantity minimized is χ2 =
∑ δy2m

σ2
m

=
∑

wmeas,mδy2m → wmeas,m
∑

δy2m,

where to the right of the arrow we assume all wmeas,m are identical. So your intuition says that the

three equations corresponding to the above would become

meanw,intuit =

∑
wmeas,mym∑
wmeas,m

→
∑

ym
M

(8.3a)

– 23 –

Again, to the right of the arrow we assume all wmeas,m are identical and the subscript intuit means

“intuitive”. For the variances the intuitive expressions are

s2w,intuit =
M

M − 1

∑
wmeas,mδy2m∑
wmeas,m

=
χ̂2

(
∑

wmeas,m/M)
→

∑
δy2m

M − 1
(8.3b)

s2mean,intuit =
s2w,intuit

M
=

∑
wmeas,mδy2m

(M − 1)
∑

wmeas,m
=

χ̂2
∑

wmeas,m
→

∑
δy2m

M(M − 1)
. (8.3c)

In fact, after a formal derivation, the first two equations (8.3a and 8.3b) are correct, so we will drop

the additional subscipts intuit and formal on mean and s2w. However, after a formal derivation,

the last of these equations becomes, and is always written (e.g. BR equation 4.19; Taylor equation

7.12)

s2mean,formal =
1∑

wmeas,m
→ σ2

meas

M
. (8.4)

This is a problem, for the following reason.

Note the excruciatingly painful difference between the intuitive equation 8.3c and the formally

correct equation 8.4: the former depends on the variance of the datapoint residuals s2w, as you’d

think it should, while the latter depends on only the adopted intrinsic measurement variances of

the data σ2
m, which are chosen by the guy doing the fit. If you do an unweighted average, and

derive a certain variance, and next do a weighted average in which you choose some values for σm
that happen to be wrong, the two fits give different results for s2mean. This is crazy.

To get around this difficulty, we follow the procedure in BR equations 4.20 to 4.26. This

introduces an arbitrary multiplicative factor for the weights and goes through the ML calculation

to derive, instead of equation 8.4, the far superior

s2mean,BR =
s2w
M

=
χ̂2

∑
wmeas,m

, (8.5)

which is precisely the same as our intuitive guess, equation 8.3c. The difference between the formal

equation 8.5 and the intuitive equations 8.3b and 8.4 is the numerator, which contains the reduced

chi-square χ̂2; for the case where all σmeas,m are identical, χ̂2 = s2w
σ2
meas

. Note that χ2 and χ̂2 are

defined in equations 8.1.

– 24 –

8.2. The multivariate chi-square fit

Here we generalize §8.1, which dealt with the weighted average, to the multivariate case. In

this case, chi-square fitting is just like least-squares fitting except for the following:

1. In the least-squares matrix X of equation 2.1a, each row m is a different measurement with

a different intrinsic variance σm. For chi-square fitting you generate a new matrix Xχ, which

is identical to X except that each row m (which contains a particular equation of condition)

is divided by σm. This new matrix is the same as NR’s design matrix (Figure 15.4.1), which

they denote by A.

2. For chi-square fitting, divide each datapoint ym in equation 2.1b by σm. You are generating

a new data vector Yχ, which is identical to Y except that each datapoint is divided by σm.

This new data vector is the same as NR’s vector b.

3. Note that the above two steps can be accomplished matrixwise by defining theM×M diagonal

matrix [σ] in which the diagonal elements are σm.

[σ] =




σ0 0 . . . 0

0 σ1 . . . 0
...

...
. . . 0

0 0 0 σM−1




(8.6)

in which case we can write

Xχ = [σ]−1·X (8.7a)

Yχ = [σ]−1·Y . (8.7b)

4. Carry through the matrix calculations in equations 8.8 below (using the matrices subscripted

with χ).

You’ve divided each row, i.e. the equation of condition for each row m, by a common factor, so the

solution of that particular equation of condition is unchanged. However, in the grand scheme of

things—i.e. the normal equations—it receives a greater or lesser weight by a factor 1
σ2
m
.

To perform the chi-square fit, we use the following equations:

Xχ = [σ]−1·X (8.8a)

– 25 –

Yχ = [σ]−1·Y . (8.8b)

Xχ · a = Yχ (8.8c)

[α] = XT

χ ·Xχ (8.8d)

[β] = XT

χ ·Yχ (8.8e)

a = [α]−1 · [β] . (8.8f)

Having calculated the derived coefficients a, we can calculate the residuals. In doing so we must

recall that Xχ and Yχ contain factors of 1
σm

and [α]−1 contains factors of σ2
m. With all this, we

can write the chi-square fit predicted data values as

Yχ = Xχ · a (8.8g)

and the chi-square residuals as

δYχ = Yχ −Yχ (8.8h)

Because the data vector Yχ contains factors of 1
σm

, so do the residuals δYχ. You should, of course,

always look at the residuals from the fit, so remember these scale factors affect the residual values!

For example, if all σm are identical and equal to σ, then Yχ = Y

σ . If they don’t, then when you

plot the residuals δYχ each one will have a different scale factor!

Moving on, we have

χ2 = δYT

χ · δYχ (8.8i)

χ̂2 =
δYT

χ · δYχ

M −N
. (8.8j)

Finally, we have the analogy of equation 8.5 expressed in matrix form as in equation 3.7:

– 26 –

sa,intuit
2 = χ̂2 diag{[α]−1} . (8.9)

This intuitively-derived result is in contrast to the result derived from a formal derivation, which

is the analogy to equation 8.4; again, it omits the χ̂2 factor:

sa,formal
2 = diag{[α]−1} . (8.10)

This formally-derived result is what’s quoted in textbooks (e.g. NR equation 15.4.15, BR equation

7.25). It provides parameter errors that are independent of the datapoint residuals, and leads to

the same difficulties discussed above for the weighted mean case.

8.3. Which equation—8.9 or 8.10?

In most cases—but not all—we recommend that you use equation 8.9. Equation 8.9 is very

reasonable. Suppose, for example, that the least-squares fit model is perfect and the only deviations

from the fitted curve result from measurement error. Then by necessity we have s2 ≈ σ2
meas and

χ̂2 ≈ 1. (We write “≈” instead of “=” because different experiments produce somewhat different

values of s2 because of statistical fluctuations; an average gives σ2 = 〈s2〉.) In this situation, though,

equations 8.9 and 8.10 are identical. However, if the least-squares fit model is not correct, meaning

that it doesn’t apply to the data, then the residuals will be larger than the intrinsic measurement

errors, which will lead to larger values of χ2 and χ̂2.

However, equation 8.9 is not a panacea. The numerical value of χ̂2 is subject to statistical

variation. If the number of datapoints M is small (or, more properly, if the number of degrees of

freedom (M − N) is small), then the fractional statistical variation in χ̂2 is large and this affects

the normalization inherent in equation 8.9. Alternatively, if you really do know the experimental

errors equation 8.10 is appropriate.

Use your head!

8.4. Datapoints with known relative but unknown absolute dispersions

Here the σm are all different. The mth row of the equation-of-condition matrix X and the

mth element of the data vector Y get divided by their corresponding σm. The equation embodied

in each row of the matrix equation 2.2 remains unchanged, but the different rows are weighted

differently with respect to each other.

Consider two measurements with intrinsic measurement uncertainties (σ1, σ2); suppose σ1 <

σ2. After being divided by their respective σm’s, all of the numbers in row 1 are larger than those

– 27 –

in row 2. In all subsequent matrix operations, these larger numbers contribute more to all of the

matrix-element products and sums. Thus, the measurement with smaller uncertainty has more

influence on the final result, as it should.

Suppose that the above two measurements were taken under identical conditions except that

measurement 1 received more integration time than measurement 2; we have σ1

σ2
=

(
τ1
τ2

)−1/2
, so the

rows of Xχ are weighted as τ1/2. This means that during the computation of [α] = XT
χ ·Xχ, the

self-products of row 1 are weighted as τ1. This means that each datapoint is weighted as τ , which

is exactly what you’d expect! Note that this is also exactly the same weighting scheme used in a

weighted average, in which the weights are proportional to
(

1
σm

)2
. We conclude that the weighting

scheme of the first two steps in section 8.2 agrees with common sense.

Suppose you don’t know the intrinsic measurement dispersion σm, but you do know the relative

dispersion of the various measurements. For example, this would be the case if the datapoints were

taken under identical conditions except for integration time; then σm ∝ τ−1/2. In this case, multiply

each row by its weight w ∝ 1
σm

and proceed as above. (The factors 1
σm

in the equations of condition

become 1
σ2
m

in the normal equations.)

8.5. Persnickety Diatribe on Choosing σm

8.5.1. Choosing and correcting σm

In the previous section, equation 8.10 taught us that—formally, at least—the variances in

the derived fit parameters (or their uncertainties, which are the square roots) depend only on the

adopted uncertainties σm and not on the actual variance of the datapoints.

Are you bothered by the fact that the variances of the derived parameters sa are independent

of the data residuals? You should be: it is obvious that the residuals should affect sa.

Formally, sa depends only on the adopted uncertainties σm, which are chosen beforehand

by you—you’re supposed be such a good experimentalist that you really do know the intrinsic

uncertainty in your measured values. Moreover, you are assuming that there are no other sources

of uncertainty—such as “cosmic scatter” or an inappropriate model to which you are fitting the data.

Suppose your adopted values of σm are off by a common scale factor, i.e. if σm,adopted = fσm,true.

Then χ̂2 ≈ f−2 instead of χ̂2 ≈ 1. And to obtain the parameter errors from δχ2, you must find the

offset δx such that ∆χ2 = f−2 ≈ χ̂2.

You can correct for this erroneous common factor f by dividing your adopted values of σm by

f . Of course, you don’t know what this factor f is until you do the chi square fit. Dividing them

by f is equivalent to multiplying them by χ̂. And, of course, the same as multiplying σ2
m by χ̂2.

– 28 –

8.5.2. When you’re using equation 8.9. . .

To be kosher, after having run through the problem once with the adopted σm, calculate the

χ̂2; multiply all σm by χ̂; and redo the problem so that the new χ̂2 = 1. Then the derived variance

sa is also correct. You can obtain it either as the corresponding diagonal to the covariance matrix

(equations 8.9 and 8.10, which are identical in this case) or by finding what departure from x0 is

necessary to make ∆χ2 = 1.4 This redoing the fit may seem like unnecessary work, but when we

deal with multiparameter error estimation it’s the best way to go to keep yourself from getting

confused.

8.5.3. Think about your results!

In the case ∆χ2 ≈ 1 (and χ̂2 ≈ 1) the dispersions of the observed points sm are equal to

the intrinsic dispersions of the datapoints σm and the mathematical model embodied in the least-

squares fit is perfect. That, at least, is the theoretical conclusion. In practice, however, your

obtaining such a low, good value for χ̂2 might mean instead that you are using too large values for

σm: you are ascribing more error to your datapoints than they really have, perhaps by not putting

enough faith in your instrument.

But there is another way you can get artificially small values for χ̂2. This will occur if your

measurements are correlated. Suppose, for example, that by mistake you include the same mea-

surements several times in your fit. Then your measurements are no longer independent. Cowan

discusses this possibility in his §7.6.

High values of χ̂2 indicate that the model is not perfect and could be improved by the use of

a different model, such as the addition of more parameters—or, alternatively, that you think your

equipment works better than it really does and you are ascribing less error to your datapoints than

they really have. And in this case, using equation 8.10 instead of 8.9 is disastrous.

Think about your results.

8.5.4. When your measurements are correlated. . .

One more point, a rather subtle one. There are circumstances in which your datapoints are not

independent. Then the formulation of chi-square fitting (and least-squares fitting, for that matter)

is more complicated. You need to calculate the covariance matrix for the measured values ym; call

this covariance matrix V. If this matrix is not unitary, then χ2 is no longer given by equation 8.8i.

Rather, it is given by

4To understand this comment about ∆χ
2 = 1, see §??.

– 29 –

χ2 = δYT ·V−1 · δY . (8.11a)

Of course, this leads to a different expression for a, which replaces equation 8.8f,

a = (XT ·V−1 ·X)−1·XT ·V−1 ·Y , (8.11b)

and also to a different equation for the covariance matrix,

[α]−1 = (XT ·V−1 ·X)−1 . (8.11c)

Correlated datapoints can occur when the measured ym are affected by systematic errors or

instrumental effects. Cowan §7.6 discusses this case. For example, suppose you take an image with

a known point-spread function (psf) and want to fit an analytic function to this image. Example:

a background intensity that changes linearly across the field plus a star. Here the independent

variables in the function are the (x, y) pixel positions and the data are the intensities in each pixel.

You’d take the intensity in each individual pixel and fit the assumed model. But here your data

values are correlated because of the psf. Because you know the psf, you know the correlation

between the various pixels. Such a formulation is required for CBR measurements because of the

sidelobes of the radio telescope (which is just another way of saying “pdf”).

Another case of correlated measurements occurs when your assumed model is incorrect. This

is the very definition of correlation, because the residual δym is correlated with the data value

ym. But how do you calculate V? If you could do a large number J of experiments, each with

M datapoints producing measured values ym,j , each measured at different values of xm, then each

element of the covariance matrix would be Vmn =
∑

j(ym,j − ym)(yn,j − yn). You don’t normally

have this opportunity. Much better is to look at your residuals; if the model doesn’t fit, use another

one!

Normally, and in particular we assume everywhere in this tutorial, the measurements are

uncorrelated, so one takes V = I (the unitary matrix).

9. BRUTE FORCE CHI-SQUARE AND THE CURVATURE MATRIX

9.1. Parameter Uncertainties in Brute Force chi-square Fitting

There are times when “brute force” least squares is appropriate. For example, if you have

a nonlinear problem in which taking derivatives is complicated, and if the number of unknown

coefficients is small, then it might be easier to search through the coefficient parameter space,

– 30 –

calculate the χ2 or s2 for each combination of parameters, and find the minimum. This provides

the best-fit parameter values.

How about the parameter uncertainties? Here we describe the case for a single parameter fit;

call this parameter a. Generalizing to more parameters is straightforward.

For a chi-square fit, getting the uncertainty is easy. Calculate χ2 as a function of the guessed

values of a. As usual, define ∆χ2 as χ2 minus its minimum value; the minimum value gives the

best estimate of a. The uncertainty in a is that offset where ∆χ2 = 1. See §??.

For a least-squares fit, it’s exactly the same idea. A least-squares fit implies that the measure-

ment uncertainties σm are all identical, equal to σ. Thus, the sample variance s2 = 1
M−1

∑
∆y2m

is equal to χ2σ2

(M−1) . In other words, χ2 = (M−1)
σ2 s2, which has expectation value (M − 1). Therefore,

the uncertainty in a is that offset where ∆χ2 = 1, i.e. where ∆s2 = σ2

(M−1) .

To be totally explicit: For the fitted value of afit, the sample variance is

s2min =
1

M − 1

∑
(ym − afit)

2 (9.1)

As a is moved from its fitted value, s2 increases, so we can speak of the minimum sample variance

s2min. As we move a from its fitted value by amounts ∆a, the uncertainty in a is that value of ∆a

for which s2 increases by
s2min

M−1 , i.e. that value of ∆a for which

∆s2 = s2 − s2min =
s2min

M − 1
(9.2)

10. NOTATION COMPARISON WITH NUMERICAL RECIPES

I learned least squares from Appendix A of Chauvenet (1863). He didn’t use χ2 and didn’t

use matrix techniques, but §0 and 1 follows his development quite closely. I wrote the first version

of this document before knowing of NR’s treatment, which explains my orientation towards least

squares instead of chi-square. I’m fortunate in this approach because it made me realize the pitfalls

one can get into with chi-square, as I discuss in §8.

On the other hand, NR describe the least-squares approach with some disdain in the discussion

of equation (15.1.6) and warn that it is “dangerous” because you aren’t comparing the residuals to

the intrinsic inaccuracies of the data. In astronomy, though, more often than not you don’t have

an independent assessment of σm. But you might know the relative weights, and this is a plus for

chi-square fitting. In any case, heed our warnings about chi-square fitting in §8.

In this writeup I have revised my old notation to agree, partially, with NR’s. This effort wasn’t

completely successful because I didn’t read NR very carefully before starting. To make it easier to

– 31 –

cross-reference this document with NR, I provide the following table of correspondences (left of the

double arrow is ours, to the right is theirs):

X←→ A (10.1a)

Y ←→ b (10.1b)

XT ·X = XX = [α]←→ AT ·A = [α] (10.1c)

XX−1 = XXI = [α]−1 ←→ [α]−1 = [C] = C (10.1d)

I use M for the number of measurements and N for the number of unknown coefficients; NR uses

the opposite, so we have

N ←→M (10.1e)

M ←→ N (10.1f)

Confusing, hey what?

It is a great pleasure to thank Tim Robishaw for his considerable effort in providing detailed

comments on several aspects of this paper. These comments led to significant revisions and im-

provements. He also fixed bad formatting and manuscript glitches.

REFERENCES

Bevington, P.R. & Robinson, D. 1992, Data Reduction and Error Analysis for the Physical Sciences

(WCB/McGraw-Hill).

Chauvenet, W. 1863, A Manual of Spherical and Practical Astronomy, Dover Press.

Cowan, G. 1998, Statistical Data Analysis, Clarendeon Press.

Press, W.H., Flannery, B.P., Teukolsky, S.A., & Vetterling, W.T. 2001, Numerical Recipes (second

edition), Cambridge University Press.

Taylor, J.R. 1997, An Introduction to Error Analysis, University Science Books.

This preprint was prepared with the AAS LATEX macros v5.0.

