Power spectrum estimators

Most of the lecture was based on astro-ph/9708020, by Tegmark, Hamilton, Vogeley and
Szalay; this note is a direct summary of that paper. (Please tell Joanne jecohn@astron.berkeley.edu

of any mistakes, typos or more important, thanks!).

1. Introduction

We’ve been hearing all week about how to calculate theoretical predictions for theories. The
big underlying question between theories and measurements is “how well do theory and data
agree?” The simplest thing to check in both is the power spectrum. So then the questions become

1. What is the power spectrum predicted by the theory?
2. What is the power spectrum of the data?
3. How well do they agree (i.e. what are the errors)?

4. what is the best theory (i.e. parameters) for the data, and how well does it fit (errors again)?

The field has developed significantly in the last 5-10 years, with some of the “traditional”
methods dating back only 10 years! The data (and theoretical predictions) are getting good
enough that precision is becoming crucial, in addition the data sets are getting large enough that
the speed of a method is an issue. The main new aspect in the “new” methods is that they allow

one to deal with systematics more effectively, and often hybrids of many methods are used at once.

2. What is the power spectrum from the data?

This sounds like a very simple question, but it serves to illustrate the problem. The theorist
can define the power spectrum immediately: taking the continuous density field p(x), we have

that fluctuations obey

px)—p
(x) = 2L =P (1)
p
with a correlation function
(G0E" (x4 1)) = (1) = s [ dhP(R)ess (2)
and the power spectrum P(k) obeys
P(k) = (|é]?) (3)

where the brackets mean ensemble average (which is done in practice as a volume average), and
0r is the Fourier transform of §(x). Note that I will not be too careful about Fourier transform



conventions in these notes, the paper does do them in detail in an appendix. The correlation
function can also be interpreted as excess probability over random

dP = p*[1 4 &(x)]dV1dV; (4)

of finding an object in volume 1 and another in volume 2 simultaneously.

The observer on the other hand has N galaxies, and thus a density field given by
n(r) = 32 62(r - ra) (5)
(a4
with galaxies at positions r,. This isn’t the same as above for several reasons.

e Instead of a continuous §(r) we have a discrete sampling given by n(r).
Treating this sampling as a Poisson process, we can say that

_mu”

Prob(n(r)=mn)=e*

(6)

n!
where

p(r) = n(r)(1+46(r)) (7)
and the fluctuations ensemble average, (6xér) = (27)36” (k — k') P(k). As we saw the day
before, this leads to shot noise in the measurements.

e We don’t know p. The analogue we have is #(r). This is the expected number of galaxies,
in the particular survey, in a volume dV', in the absence of clustering in the survey. This
includes properties of the survey (i.e. the selection function, thus it depends upon position)
but also includes an estimate of the average number of galaxies you’d see, which you don’t
know ahead of time. You need to figure this quantity out somehow or make sure things don’t
depend too strongly on it (so that errors don’t mess up the estimates too much). More later.

e Not only is the density field sampled discretely, it is also not sampled in all directions.

There is only a finite volume of the density sampled, and the survey can be volume limited,
flux limited or something else. In addition, there might be biases, distortions, etc., and other
systematics, which will affect how well p is sampled.

However, from the theorist, we know we want some quantity that is quadratic in the density,
so that we want something that Tegmark et al write abstractly as

@ = / / &Br d3r' Ej(x, r')ZEB Zgg (8)

Most of the different methods are just ways of picking out E;(r,r’) (aside from the “brute
force method”). Essentially you want to give the power spectrum in a bunch of bands, with as



much info as possible from the data, but without any biases/systematics that you can get rid of.
In addition you want the errors to be calculable and uncorrelated, and you want the calculation
to be doable (on a computer or otherwise).

“Keeping as much info as possible from the data” can be made more precise. Fisher matrix
techniques (outlined in the paper) can be used to quantify the “information” in a data set with
respect to a parameter or parameters of interest, by saying how big the error bars are. If you
“clean” the data, and remove noise, or compress it for some other reason, you can check how much
information is lost by computing the Fisher matrices before and afterwards. It should be noted
that Fisher matrices rely upon you knowing the probability for the data given a particular theory,
often these have to be assumed to be gaussian (not always reasonable), or calculated for example
using mock catalogues.

Looking at the expression for the estimators, ¢; again, Tegmark and co. suggested a way of

describing many of them in one language, writing
Ei(r,x') = ¢i(r)yi (r') (9)
where 9;(r) differs from estimator to estimator. In more detail,

g = |27] (10)

where

Ideally the %; is chosen to obey
/ Brii(r) = 0 (12)

“—1” doesn’t matter in the definition of x;. This is called the integral

so that in practice the
constraint and will be discussed more later. One thing to note is that this constraint is not
automatically met by all the examples below.

Given a 9;(r) you are basically giving an estimator. Some examples are

1. “counts in cells”

Take

0 otherwise

ilr) = { n(r) in region i (13)

so that
0 = [ d'rln(x) - a(r)] (14)

i.e. the excess density in region ¢, which is basically just the counts in cells.



2. “Fourier transforms”
Take
Pi(r) qb(r)eiki'r (15)

that is, weighted Fourier coefficients of some sort. Some choices are

1 in surve . .

o(r) = Y Fourier transform in survey
0 otherwise

n

(r APM (16)
s FKP
efnof V- % narrow in k space

which have all been used in the past. The top one, a straight Fourier transform, is the
simplest, the second was used in APM, the third is what is called the FKP weighting (after
the Feldman, Kaiser and Peacock ’93 paper which described it) and the fourth has the
advantage of giving narrow windows in k space. Note that they don’t necessarily obey the
integral constraint.

3. “Spherical Harmonics”

Take
Yi(r) < Yo je(kir) . (17)

4. Take 9;(r) to be the eigenmode of a useful operator.

In the above, the top case is the correlation function, which is discussed in another set of
notes. Versions of the second are called “the traditional method” by Tegmark et al, and an
example of the fourth method is the Karhunen-Loeve transform (KL transform).

The paper discusses in detail the “traditional method”, the KL transform, the brute force
likelihood method and the quadratic method. In comparison to the above cases, the quadratic
method can be written as

¢ = “XC;IX” (18)
with C; to be defined later on, instead of ¢; = |z,|2.
As many of the cases do involve the quadratic ¢; = |z;|?, let’s consider what this quantity

is. Observationally, you just plug in your data points, with your assumption for 7(r), and get
out some estimator ¢;. Theoretically, you can also calculate what this should be. Consider more

generally <.r,.r;> Theory gives a definite prediction for this if you have chosen your ;. That is,

(x)=0

19
z;x%) = C;i = Ny + S5 ( )
J J J J



where the matrices N, S are called the noise and signal matrices respectively, and their combination
is usually called C. Theoretically you can calculate these matrices given the theory in the following
way:

(eizse) = ([ dr [2 — ] gi(r) v (20— 1] ()
= [ @rdr (G ()5 ()

)n
= @) [ dr (L4 6()(1+ 8()(r)(x) (20)
— d37‘¢i(;)(r§(r) + /A G )3'ti’z'(k)vj(k)P(k)
=Nij +5Si;

To get from the first to the second line, we used the integral constraint, [ dri;(r) = 0. Going
from the second to the third line used that the Poisson average of the discrete number density
obeys

(n(r)n(r)) = p(r)u(r’) + 67 (r — r')u(r) (21)

where
p(r) = n(r)(1+6(r)) (22)
and 67 refers to the Dirac delta function. The ensemble average still needs to be done on the third

line (hence the brackets in the expression), which are calculated to go to the fourth line. Again, if

you have a theory, you can calculate these matrices for a given power spectrum and 7n(r).

To see how this corresponds to the power spectrum more directly, consider the last line, with
the definitions of the shot noise and signal, N;; and S;; respectively. Say that the zﬁl(k) are very
narrow in k space, centered at k;. Then, for a narrow enough window, the power spectrum will
vary very slowly, allowing it to be taken out of the integral

d3k - 3k
Sis = [ G B0 P ~ b35Pk) [ st (23)

i.e. the signal will be the power spectrum weighted by f 37;;,( )121*(1() For this reason people
define the window function to be

Wik) = di(k)d7 (k) (24)

/%Wi(m —1. (25)

The off-diagonal terms in C;; correspond to how much interdependence there is between the

and require

chosen modes (i.e. covariance).

The authors then covered 4 methods: two “old” (before 1997 that is?!) ones, the traditional
and brute force methods, and two “new” methods, KL (and generalizations), and the quadratic
method. We’ll do each of these in turn.



3. “Traditional Method”

The traditional method takes
'@bi(r) = ¢(I‘)elki.r (26)

i.e. a weighted Fourier transform of the data, with the power in the :th mode being ¢, = z;z].
Calculating the expectation value of g; theoretically, we get

(@) = (ziz])

= §i(0)2 + [ Pr U [ 10 (k) 2P(R) (1)
just as we saw earlier, except for the first term. The first term comes from the fact that
/ bi(r)dr = / Bie et E g0y £ 0 (28)
(2m)°

that is, generally one won’t satisfy the integral constraint. In this form it is a bit easier to see the
problems that arise. First of all, if one misguesses 7(r) and tries to subtract it out, say getting it
off by a constant @, then one will think one has gotten rid of this offset but in fact will be left with
an offset o< (1 — a)t;(0)2. The second problem is that no matter what the estimate from the data
is of the power spectrum, by definition the data will have fluctuations going to zero on the scale of
the survey, that is for large k. For the largest scale of the survey, that of the survey itself, there
will only be one sample and thus the fluctuations will be zero (fluctuations from the average) on
that scale. That is, the data will tend to imply that P(k) — 0 as k¥ — 0 no matter what the true
P(k) does. In order to get rid of this problem, taking ¢;(0) = 0 will mean that this part of the
power spectrum will not enter into the estimates of the power or the errors, as we cannot obtain
it observationally.

One can mock up a subtracted power spectrum estimator for these,
- il =
o 29
- L (29)

where the explicit expressions for b;, A; are in the paper and are derived from ¢(r),n(r) in the
theory. In practice this subtraction can be very time consuming and produces the main downside
of this method.

A popular choice for the Fourier coefficients is given by

n(r)

P(r) = TF n(0)P

(30)
called the FKP method. Here P is the averaged power, and this weighting is derived in the paper
by Tegmark et al. Its benefit can be found by considering (z;z%). Take the modes and divide

J
them up into different k; values, ¢ = 1, N the number of galaxies. If we consider L, the smallest
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dimension of the survey (i.e. the length of the shortest side) then if we look at momenta k and

momentum bins k; satisfying
k> ki —kj| > L (31)

then we find that
(z;x}) ~ 0 (32)

that is, the overlap between power spectrum bins is close to zero. Note that large £ means small
scales. Also,

((ziz})?) (33)
is minimized. If the probability distribution for the z; is gaussian, this second quantity is directly
proportional to the errors in the estimate, and thus minimizing it is a good thing. (In practice, if
shot noise doesn’t dominate and gaussianity holds, you can show that the error in the power goes
as one over the square root of uncorrelated volumes in the sample). So this estimate is good at
short (compared to the size of the sample) distances, for k; bins that are separated “enough.” In
practice, you have what the weights are and just plug them into your data to get your estimate of
power in these bands. The main drawback is the integral constraint.

4. Brute Force Method

The Tegmark et al paper mentions this method next, although it is not a power spectrum
estimator at all-it does the whole thing, comparing data to theory, in one step. It does what you’d
like, gives the most likely parameters, however it does it within the context of strong assumptions,
and in addition can be painfully slow to implement. That is, it gives you the “most likely”
parameters in the case where the probability distribution for x is a multivariate gaussian. As x
is the density field with some weighting, one might expect this to be true at very large (linear)

scales.

The starting point is to say that the probability is gaussian, so that you can write that the

probablity for the data to have value x given the theory (with parameter vector ©) is

1 _ 1 Tc—l
x|0) = ——e 2% x 34
fixl0) = 7 (34)
where C = C(®) = N + S from before, and /C refers to the square root of the determinant of
C. What we want instead is the most probable theory (©) given the data x. We can use Bayes
theorem for this: that the probability of the data given the theory times the prior for the theory
is the probability of the theory given the data times the prior for the data, or separating out the

probability of the theory given the data,

f(x|0)f(8)

L0 =750

(35)



If we assume very broad priors for ©,x in addition to the probability for the data given the theory
being gaussian, then we have the probability (or likelihood) for any theory given the data, where
we just plug in the numbers for the data in the above expression. A broad prior for ®,x means

we just treat them as constant.

If the above is the probability for any theory parameters given the data, then the most likely
theory is the one with the most probability, i.e. the one that maximizes the likelihood £. So
one maximizes this likelihood numerically and ends up with the best set of parameters ©. If
the probabilities are not gaussian then this is not very appropriate and doesn’t give something
useful-unlike the other methods which give a power spectrum estimator but have extra nice other
properties if the underlying theory is gaussian. Here, you really want the theory to be gaussian or
else it is just plain wrong. So this is good for data on very large (linear) scales. The other point is
that it is very slow to implement, so it is good to compress the data ahead of time.

5. KL transforms

The Karhunen-Loeve method is a data analysis/reduction technique that many people swear
by. Recall that we had

(z;2]) = C;j = Ny + S5 (36)
Consider instead another basis
y = Bx (37)
where o
BNBT =1
Aot (38)
BSB' = A
with 1 the identity matrix and A a diagonal matrix with eigenvalues {1, Ag,...,An}. The new
variables {y;} obey
(yiyj) = 6i;(1+ A;) (39)

If the x; were defined using weights 1; then it follows that the y; will have weights ¢} = 3, ]3,];&]

The advantages of finding this basis are the following:

1. The {y;} are orthogonal (statistically independent) variables if the {z;} are gaussian, and
independent gaussian random variables to boot.

2. The A; have a sort of interpretation of being signal to noise,

A=y -1~ “S/N" (40)

. . . . . 21 . .
so that the signal can be considered as (signal)(“signal/noise”) or ¢; ~ “——, which is very
similar in form to the revised (subtracted) estimator for FKP, equation 29.



3. Large A; means that a mode contributes a lot of signal to noise, so that the modes are sorted
according to their information (i.e. signal to noise). Usually many modes will have \; < 1
and can be thrown out without much loss in constraining power. This is the basic idea
behind data compression for KL and a way that it is often used in conjunction with other

methods.

4. We have modes sorted according to the largest signal S. However, we could sort the modes
according to the largest dependence on something else, for example, 3C/90; = C; where 0;
is a parameter in the theory. Often when this is done, one chooses the basis vectors y; to be

orthonormal,
(yiy;) = 6ij (41)
by diagonalizing the covariance matrix C with some matrix B which obeys
BCBT =1
T (42)
BC,B' = A.

In this case the different modes are sorted by their dependence on C ;. In practice one could
consider modes which have the most “signal” with respect to many different parameters and
then take the set of modes which includes as many of these as possible (e.g. if you want to

get at several parameters at once).

Another version of this is to choose a power spectrum that has features one wants (ie is
monotonic in k for regions of interest) and to sort according to this “power spectrum”, which

results in windows in k space, ie the power spectrum for different values of &.

5. The KL method is “asymptotically pixelization independent.” One is diagonalizing a large
matrix to implement the method, and so often one doesn’t take as many pixels as there are
galaxies, but a smaller number of pixels, corresponding e.g. to larger regions in the sky.
With this smaller number of pixels, one can pick out the modes with the most “signal” (or
parameter dependence). If one then refines the pixelization, taking smaller regions in the
sky, the formerly best modes remain strong “signal” modes, and one just adds more modes

with signal dependence.

6. Troubleshooting. If you take a power spectrum from your theory, calculate the covariance
matrix C, and use it to calculate your y; variables, and then calculate from the data what
<y,y;‘> is, you should find that it is roughly diagonal with variance one. If you get anything
strongly different (how likely this is can be estimated from gaussian statistics if they are
applicable, ie if one is on large scales), then either you have something which isn’t gaussian,

or you've put in the wrong power spectrum.

7. Linear Filtering. There’s been reference above to “throwing out” modes which one doesn’t
want. To keep the large A modes (“signal”) one defines a new set of modes

N
z; =Y (CBY)jjw;y; (43)

=1
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where the weights w; tell you which modes you are keeping. Some obvious choices are

wj =1 z} = x; same as original
w; =1iff Ay > Ac “optimal subspace” (44)
w; = % “Wiener filtering”

Wiener fitering interpolates between large and small values of A more smoothly than just
throwing out some and keeping others (for the “optimal subspace”.) Even when one uses
another method, KL compression can help make the problem more tractable.

8. Last but not least, it appears that if you did choose the wrong power spectrum in your
initial guess (and used it to calculate C and thus the variables y;), that you will not bias
your power spectrum estimate. (You will get variables that don’t have variance 1, though.)

6. Quadratic Estimator

The fourth method they cover is the quadratic estimator method. This is a minimum variance
power estimator. One breaks up momentum space into several bins, N of them (where N’ < N,
the number of galaxies). That is, one chooses k; where

0<k1<k2<k3<"'<kNl<kN/+1IOO (45)

and takes the power to be constant in each “band”, that is there are N’ constants p;, the power

corresponding to the band with k; — k;_1. Again, from one’s guess for the theory one has a matrix

C = N + S. Consider .
oC . . d°k

~ci= dalk)0i (k) s 6

op; ’ ki> k| > ki1 ()il )(zﬂ)?’ (46)

as one can see by substitution. (I'm not sure whether the QL have to obey anything in particular,

and I'm not sure how N’ is chosen however.)

One can use this matrix to define ¢« = 1, N’ different power estimators in different bands:
L et -1
G = 35X c™''C,C'x (47)

which is compressing the data (only N’ estimators, not N of them) and although quadratic in the
x; has the central weight that makes it slightly different from the other examples.

If the probability distribution for z; is gaussian, then the mean and covariance of ¢;, are given
in terms of the Fisher matrix. So (q) = Fp, that is q is proportional to the power. And the
covariance, which gives the error for a gaussian theory, (qq*) — (q)(q") is the Fisher matrix, and
thus, as the Fisher matrix gives the smallest errors one can get, this estimator has the smallest
errors one can get. In practice, one rescales q by the square root of the Fisher matrix to get
something for p that is less correlated and less noisy.
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7. Relations between the methods

These power spectrum estimators are all linked together. For instance, the quadratic and KL
methods are linked by the identity

20i = >y} (48)
where the ¢; is the quadratic estimator, the y; are the KL vectors, defined with a B obeying

BCJBT = A’, with A’ a diagonal matrix with eigenvalues /\9. These give the same estimates after
one subtracts off shot noise and properly normalizes.

The FKP and quadratic estimators are the same at small scales (they show this in detail),
which makes sense, they are both minimum variance weights when one makes a gaussianity

assumption.

The quadratic and brute force methods are related because one can solve for the power in the
quadratic method, and then reiterate, using for input values of p; the results from the previous
iteration. Eventually one gets the maximum likelihood solution (they point out that this is
equivalent to using the Newton Raphson method). One caution is that if you have a noisy power
spectrum, then the error bars you estimate this way will be wrong, and they suggest that instead
of interating that you parameterized P(k) with a fitting function and add parameters until x* per
dof drops below one. More on this in the paper.

8. Systematic errors

One place that the “new” methods (especially KL) excel is in the treatment of systematic
errors. This can be illustrated by our ignorance of n(r). Recall that in the FKP method, the
estimators ¢; had an extra piece,

(w) = oy + [Py [ L (49)

and we argued that we want ¢(0) = 0 for two reasons, so that a misestimate of the integral of n(r)
wouldn’t result in an additive error to all the estimates, and so that P(k) wouldn’t be forced to go
to zero at large scales (small k) even though the data will have no fluctuations on the largest scale.

Rephrase this as: you have a systematic effect that you don’t know (in this case n(r)) and so
you take out the mode that depends upon it (in this case 1(0)). Stated this way, the generalization
becomes: if you have a systematic in some mode or modes, make the results independent of that
mode.

Examples they give include incorrectly modeled extinction, which would result in power in a
purely angular mode. So you can take out angular modes or more pointedly modes corresponding
to dust templates. Another is the misestimate of radial selection function. Here you can take
out the purely radial modes. The KL method is the only one which keeps phase information, i.e.
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which can tell you if a vector r is in the radial or angular direction (and same in Fourier space), so
many of these things have to be done in the context of the KL method. Generally you use some
projection operator II on your vector x, many different ones are discussed in the text and why
certain features are convenient.

There is also an appendix on redshift distortions, and Tegmark and Hamilton (in another

paper) show how to get a real space power spectrum from a redshift space power spectrum.

9. Comparisons

The paper ends with a chart comparing the methods. Briefly, on small scales, the traditional
is best, on large KL, quadratic and brute force are all good. Part of what makes a method “fine”
is that the errors are uncorrelated. For redshift space distortions and getting rid of systematics,
the KL method is the best. For the largest scales, you want to use the quadratic method, as it is
the fastest (there is a way to make it go linearly in N, the number of galaxies). So in practice you
probably use a hybrid, FKP on the smallest scales, KL to compress the data, and quadratic on
the largest scales. Something like this was done in SDSS.



