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Goal: understand large-scale structure

Baryon acoustic oscillations imprint characteristic scale on
matter distribution (Standard Ruler)

Matter �uctuations ampli�ed by growth function

Dark energy dominates growth function today (at low z)

Therefore measuring matter distribution today tells us about
dark energy!
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Why perturbation theory

Need to run large number of N-body simulations to compute
statistical observables (e.g. power spectrum)

BAO scale is large (∼ 100 Mpc/h), so need to run large
volume simulations

Simulations are expensive!

Analytic solution computes statistical quantities directly

Direct analytic solution impossible (non-linear equations of
motion), so must resort to perturbation theory
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Unperturbed cosmology

Start well after matter-radiation equality

Flat FRW cosmology with Λ, ignore radiation and neutrinos

Friedmann equation: H2 = 8πG
3 ρ̄ + Λ

3

Mean density: ρ̄ ∝ a−3

Later will restrict attention to Einstein-de Sitter cosmology:
Ωm = 1, Λ = 0
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Matter �uid

Newtonian gravity (distance scales well within the horizon)

Non-relativistic �uid

Pressureless, collisionless, zero viscosity

Assumptions good for cold dark matter

Assumptions fail for baryons, but only in regions of high density
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Peculiar velocity �eld

Single-stream approximation (no shell crossing)

Irrotational: vorticity w ≡ ∇× v = 0
True in linear theory: w decays as a−1

(Not clear when/where these assumptions break down, but the
show must go on)
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Cosmological coordinates

Comoving coordinates: x = r/a

Conformal time: τ =
∫

dt/a or dτ = dt/a

Metric: ds2 = a2(τ)[−dτ2 + dx2]
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Equations of motion for a single particle

Non-relativistic action:

S =
∫

dt

[
1
2
m

(
dr
dt

)2

−mΦ

]

=
∫

dτ a(τ)

[
1
2
m

(
dx
dτ

)2

−mΦ

]

Φ(x, τ) = a2(τ)
∫

d3x′
δρ(x′, τ)
|x− x′|

Equations of motion:

dx
dτ

=
p

ma
,

dp
dτ

= −ma∇Φ
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Phase space distribution function

dN = f(x,p, τ) d3x d3p

For a collection of point masses,

f(x,p, τ) =
∑
α

δ3(x− xα(τ)) δ3(p− pα(τ))

Mass density: ρ(x, τ) = ma−3(τ)
∫

f(x,p, τ) d3p

Momentum density:
ρ(x, τ)v(x, τ) = a−4(τ)

∫
f(x,p, τ)p d3p

All higher moments of f are products of ρ and v
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Collisionless Boltzmann equation

df

dτ
=

∂f

∂τ
+

p
ma

· ∇f −ma∇Φ · ∂f

∂p
= 0

Conservation of phase space volume

Taking moments gives �uid equations
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Fluid equations

∂δ

∂τ
+∇ · v = −∇ · (δv) (Continuity)

∂v
∂τ

+Hv +∇Φ = −(v · ∇)v (Euler)

∇2Φ = 4πGa2ρ̄δ =
3
2
Ωm(τ)H2(τ)δ (Poisson)

H = d ln a/dτ = aH

ρ(x, τ) = ρ̄(τ)[1 + δ(x, τ)]
v = peculiar velocity (v = 0 at zeroth order)
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Linearized �uid equations

Assume δ and v small, of the same order

Drop right-hand sides of �uid equations:

∂δ

∂τ
+ θ = 0

∂θ

∂τ
+Hθ +

3
2
Ωm(τ)H2δ = 0

=⇒ ∂2δ

∂τ2
+H∂δ

∂τ
− 3

2
Ωm(τ)H2δ = 0

θ ≡ ∇ · v (peculiar velocity divergence)
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Growth function

d2D

dτ2
+H(τ)

dD

dτ
− 3

2
Ωm(τ)H2(τ)D = 0

Two linearly indepedent solutions: D+(τ) (growing) and
D−(τ) (decaying)
Ignore decaying solution: δL(x, τ) = D+(τ)δ0(x)
For Einstein-de Sitter universe (or during matter domination),
D+ ∝ a and D− ∝ a−3/2

When Λ 6= 0, D+ falls below a at late times
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Growth function plot
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Statistical observables

Correlation function: 〈δ(x)δ(x′)〉 = ξ(|x− x′|)
Baryon acoustic peak at r ≈ 105 Mpc/h

Power spectrum: 〈δ̃(k)δ̃(k′)〉 = P (k)δ3(k + k′)
P (k) is just the Fourier transform of ξ(r)
At linear order PL(k, τ) = D2(τ)P0(k)
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Correlation function
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Power spectrum
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Power spectrum
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Standard Perturbation Pheory

Basic theory worked out long ago [reviewed in Peebles 1980]

Explicit formulas and diagrammatic methods developed in 80's
and 90's [Fry 1984, Goro� et al 1986, Makino et al 1992]

Basis for most other perturbative theories
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Fluid equations in Fourier space

Velocity �eld: ṽ(k) = − ik
k2 θ̃(k)

RHS of continuity equation:

FT[−∇ · (δv)]

= −ik ·
∫

d3q1 d3q2 δ3(q1 + q2 − k)
−iq1

q2
1

θ̃(q1)δ̃(q2)

RHS of Euler equation (after taking divergence):

FT[−∇ · [(v · ∇)v]] = −ik ·
∫

d3q1 d3q2 δ3(q1 + q2 − k)

×
(
−iq1

q1
1

· iq2

)
−iq2

q2
2

θ̃(q1) θ̃(q2)
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Fluid equations in Fourier space

∂δ̃

∂τ
+ θ̃ = −

∫
d3q1 d3q2 δ3(q1 + q2 − k)

k · q1

q2
1

θ̃(q1)δ̃(q2),

∂θ̃

∂τ
+Hθ̃ +

3
2
ΩmH2δ̃

= −
∫

d3q1 d3q2 δ3(q1 + q2 − k)
k2(q1 · q2)

2q2
1q

2
2

θ̃(q1) θ̃(q2).

Non-linearity manifested as convolution in Fourier space
(mode-coupling)
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Perturbation expansion

δ̃(k, τ) =
∞∑

n=1

δ̃(n)(k, τ), θ̃(k, τ) =
∞∑

n=1

θ̃(n)(k, τ).

Insert perturbation expansion in �uid equations, solve order by
order

Simpli�cation for Einstein-de Sitter universe:

δ̃(n)(k, τ) = an(τ)δn(k), θ̃(n)(k, τ) = H(τ)an(τ)θn(k)

(a ∝ τ2, H = 2/τ)
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Recursive solution

nδn(k) + θn(k) = An(k), 3δn(k) + (1 + 2n)θn(k) = Bn(k),

where

An(k) = −
∫

d3q1 d3q2 δ3(q1 + q2 − k)
k · q1

q2
1

n−1∑
m=1

θm(q1)δn−m(q2),

Bn(k) = −
∫

d3q1 d3q2 δ3(q1 + q2 − k)
k2(q1 · q2)

2q2
1q

2
2

×
n−1∑
m=1

θm(q1)θn−m(q2).

Plug in to �uid equations: nth order term sourced by lower
orders
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Integral solution

Can obtain explicit integral expression

δn(k) =
∫

d3q1 . . . d3qn δ3(
∑

qi − k)Fn({qi})δ1(q1) . . . δ1(qn)

θn(k) =
∫

d3q1 . . . d3qn δ3(
∑

qi − k)Gn({qi})δ1(q1) . . . δ1(qn)

Kernels Fn, Gn de�ned recursively, �rst few are

F1(q1) = G1 = 1

F2(q1,q2) =
5
7

+
q1 · q2

2q1q2

(
q1

q2
+

q2

q1

)
+

2
7

(
q1 · q2

q1q2

)2

G2(q1,q2) =
3
7

+
q1 · q2

2q1q2

(
q1

q2
+

q2

q1

)
+

4
7

(
q1 · q2

q1q2

)2
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Second order power spectrum

Assume initial density δ0 is a Gaussian random �eld, so all
n-point functions reduce to products of 2-point function
Expand δ to third order to obtain P (k) to second order:

〈δ̃(k)δ̃(k′)〉 = a2〈δ̃1(k)δ̃1(k′)〉+ a4〈δ̃2(k)δ̃2(k′)〉
+ a4〈δ̃1(k)δ̃3(k′)〉+ a4〈δ̃3(k)δ̃1(k′)〉

=⇒ P2(k) = PL(k) + P22(k) + P13(k)

Explicit integral expressions exist for P22 and P13

Schematically P22 ∼
∫

PL

∫
PL, P13 ∼ PL

∫
PL
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Limitations of SPT

Only formally valid for Einstein-de Sitter universe: D ∝ a

Approximately valid for arbitrary cosmology if we just replace a
by the true linear growth function D in our perturbation
expansion

Perturbation theory breaks down at late times or at high k
(∼ k = 0.2h/Mpc at z = 0)
Power spectrum diverges, can't calculate correlation function
meaningfully
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Growth of non-linear power
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Growth of non-linear power
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Comparison with N-body simulations
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Lagrangian Perturbation Theory

Lagrangian picture of �uid mechanics: x = q + Ψ(q)
ρ̄[1+δ(x)]d3x = ρ̄d3q =⇒ 1+δ(x) = [det(δij +∂Ψi/∂qj)]−1

Linear solution for Ψ gives Zel'dovich approximation:

1 + δ(x, τ) =
1

[1− λ1D1(τ)][1− λ2D1(τ)][1− λ3D1(τ)]

Pros: intrinsically non-linear, 2nd and 3rd order calculations
feasible

Cons: breaks down at lower k than SPT
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Renormalized Perturbation Theory

Crocce & Scoccimarro, astro-ph/0509418

Starts with diagrammatic formulation of perturbation
expansion

Attempts to identify renormalized vertices and propagators, à
la QFT

Pros: seems to match simulation data well

Cons: extremely complicated, requires �eld theory background
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Resummation in Lagrangian picture

Matsubara,
arXiv:0711.2521

Pulls out certain series of
terms from in�nite PT
expansion, resums them into
a Gaussian prefactor:
P ∼ e−Ak2

[PL(k) +
P̃13(k) + P22(k)]
Power spectrum is wrong at
high k, but correlation
function is good

10

FIG. 7: Nonlinear evolution of the baryon acoustic peak in real-space correlation function for various redshifts, z = 0 (top left), 0.5 (top right),
1 (bottom left), 2 (bottom right). Black (solid) line: this work; red (dotted) line: linear theory; green (dashed) line: Gaussian-filtered linear
theory. The 1-loop SPT cannot predict the correlation function.

FIG. 8: Comparison of the correlation functions to the N-body sim-
ulations of Refs. [8, 46] in real space. Open circles: N-body results;
Black (solid) line: this work; red (dotted) line: linear theory. Only
nonlinear deviations from the linear growth are measured in N-body
simulations to reduce finiteness effects.

which is just a linear mapping of the displacement vector of
each order. This linear transformation is characterized by a
redshift-space distortion tensor R(n)

i j for nth order perturba-
tions, defined by

R(n)
i j = δi j + n f ẑiẑ j, (48)

with which Eq. (47) reduces to Ψs(n)
i = R(n)

i j Ψ
(n)
j , or in a vector

notation, Ψs(n) = R(n)
Ψ

(n). Therefore, the perturbative kernels
in redshift space are given simply by

Ls(n) = R(n)L(n). (49)

Thus, our calculation in real space can be simply generalized
to that in redshift space by using the redshift-space perturba-
tive kernels in Eqs. (31)–(34), while the form of Eq. (35) is
unchanged in redshift space, provided that the cumulants of
the displacement field are evaluated in redshift space. The
mappings of the order-by-order cumulants are quite simple:

Cs(nm)
i j = R(n)

ik R(m)
jl C(nm)

kl (50)

Cs(n1n2n3)
i1i2i3

= R(n1)
i1 j1

R(n2)
i2 j2

R(n3)
i3 j3

C(n1n2n3)
j1 j2 j3

. (51)

B. The power spectrum in redshift space

The calculation of Eq. (35) in redshift space is more com-
plicated than in real space, since the anisotropy is introduced
by the redshift-space distortion tensors. Accordingly, the mo-
mentum integrations should be evaluated before taking in-
ner products with the vector k. In redshift space, however,
the cumulants C(nm)

i j and C(n1n2n3)
i jk in Eq. (35) should be re-

placed by redshift-space counterparts, Cs(nm)
i j and Cs(n1n2n3)

i jk of
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Renormalization group techniques

McDonald, astro-ph/0606028

Macarrese and Pietroni, astro-ph/0703563

Pietroni, arXiv:0806.0971

Resumming Cosmic Perturbations 25

Figure 8. The power-spectrum at z = 2, 1, 0, as given by the RG (solid line), linear

theory (short-dashed), 1-loop PT (long-dashed), and the N-body simulations of [4]

(squares). The background cosmology is a spatially flat ΛCDM model with Ω0
Λ = 0.7,

Ω0
b = 0.046, h = 0.72, ns = 1.
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The future?

Upcoming surveys need to be compared against accurate
theoretical predictions to learn about dark energy

Renewed interest in cosmological perturbation theory on many
fronts

Many new papers, with new techiques, appearing in recent
years (even days!)
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