Profiler B-Series AC Drive

Instruction Manual

WARNINGS

Read and understand these instructions completely before attempting to install or operate this product. Use only qualified personnel to install and maintain this product to ensure safe, reliable operation. Failure to follow these directions along with standard safety procedures may lead to injury or death.

RISK OF ELECTRICAL SHOCK!

Do not attempt to remove the unit cover or to otherwise access or contact the internal parts of the drive.

Wait for 10 minutes after removing power from the unit before changing external wiring connections.

Always ground motor and drive properly.
Do not connect power if there is any sign of damage to the unit.
Check the installation design and wiring before connecting power.

> RISK OF BURNS!

High temperatures exist within the drive during operation and for at least 10 minutes after power is removed. Do not touch the exposed heat sink which can operate at temperatures in excess of $90^{\circ} \mathrm{C}$ (200 ${ }^{\circ} \mathrm{F}$).

IMPORTANT USER RESPONSIBILITY

Profiler B-Series drives have been designed for use as a component in an AC motor variable speed control system. It is assumed that the installer is qualified to complete the system specification and design and will take full responsibility for ensuring

RISK TO PERSONNEL AND EQUIPMENT!
Always remove power from the unit if there are any circumstances where injury or damage could arise from unexpected operation of the equipment.
Always determine that operation of the drive at its maximum speed will not exceed the safe limits of the motor and driven equipment.

Always disconnect the drive before using a megger to test the motor.

Do not connect power factor correction capacitors or RFI filters to the output of the drive.

This drive is a non-isolated product. The control circuitry is electrically connected to both the line supply and the motor voltages. Special care must be taken to ensure that all external control wiring is safely isolated from the user and all associated equipment.
that this product is operated in a safe manner and that the installation meets all the applicable codes and safety standards.

Installation Requirements

- The drive should be mounted to a vertical steel or aluminum panel at least $1 / 8$ " thick with 2 screws. Orient the drive so that air flows vertically over the cooling fins. Allow at least 3 " clear space at the sides of the drive and at least 4 " above and below the drive. (See Appendix 7 for mounting dimensions)
- The drive enclosure must have adequate volume or airflow to maintain the drive ambient temperature between $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ and $50^{\circ} \mathrm{C}$ ($122^{\circ} \mathrm{F}$).
- Do not mount the drive near combustible materials or allow dust, wires, metal chips or other foreign bodies to drop into the drive.
- Ensure that the motor is inverter duty rated, that it is properly sized for the drive and that it is suitable for the speed and torque range required by the application.
- Motor rotation direction is determined by the M1, M2 and M3 connections. Swapping any two connections will reverse the direction of rotation. Do not use a contactor or switch to swap the motor connections.
- Motor cable lengths should be kept as short as possible. Maximum length 150 feet (50 meters).
- Ensure the supply capacity is at least $4.2 x$ motor FLA for drives with a 115 v single phase input, $2 x$ motor FLA for drives with a 230 v single phase input, and $1.5 \times$ motor FLA for drives with a 3-phase input. Use copper wire up to 12 AWG rated for $75^{\circ} \mathrm{C}, 600$ volts.
- The circuit feeding the input power to the drive requires branch circuit protection.
- A minimum line impedance of 1 millihenry is required to prevent potential damage to the drive. If necessary, fit a line reactor to meet this requirement.
- Please consult the factory with any questions.

Connections

GROUNDING The drive must be properly grounded (earthed) during operation.
BASIC CONTROL BOARD LAYOUT POWER CONNECTIONS

Note: for Brake Option connections and resistor ratings please refer to Appendix 6

Easy 1-2-3 Set-up

During these easy 1-2-3 Set-up steps please remember:

- The drive is easily configured by setting 9 dip switches and adjusting 2 potentiometers.
- Any adjustments to the dip switches will not change the operation of the drive until power to the unit is cycled.
- Call us with any questions and special profile or configuration application requirements you encounter.

Easy 1-2-3 Set-up: Step 1

Select a profile. The Profiler B-Series drives offer 4 different Volts-Hertz profiles. Set switches 1 \& 2. A review of the application will determine the VoltsHertz profile that should be selected. See the profiles in appendix 1 for additional information or consult the factory for assistance.

Easy 1-2-3 Set-up: Step 2

Select a control scheme. The Profiler B-Series drives offer 8 different wiring methods to control the operation of the drive. Set switches 6, 7, 8 \& 9 . See the following 8 pages for additional information or consult the factory for assistance.

Easy 1-2-3 Set-up: Step 3

Select the parameter adjustments. The Profiler B-Series drives have 2 potentiometers (P1 \& P2) that enable adjustments to specific drive operating characteristics. Set switches $3,4 \& 5$. See the following 8 pages of MODE diagrams for additional information or consult the factory for assistance.

The next 8 pages of MODE diagrams show each available control scheme with the parameter adjustment combinations possible for each scheme.

* For models B115, B230 overload range is $50-100 \%$

* For models B115, B230 overload range is 50-100\%

* For models B115, B230 overload range is 50-100\%

For models B115, B230 overload range is $50-100 \%$

For models B115, B230 overload range is 50-100\%

For models B115, B230 overload range is $50-100 \%$

* For models B115, B230 overload range is 50-100\%

* For models B115, B230 overload range is 50-100\%

Appendix 1 - Profiles

Standard Profile	
Characteristic:	Constant torque
Max Speed:	60 Hz
Voltage Boost:	5%
Applications include conveyors and	
urntables.	

Applications include conveyors and urntables.

Extended Profile
Characteristic: Constant torque* Max Speed: 120 Hz Voltage Boost: 5\%

Applications include cutting tools

* Constant torque to 60 Hz Only

Fan Profile

Characteristic:
Max Speed:
Voltage Boost:

Variable torque 60 Hz

Applications include fans, pumps and blowers.

Characteristic: Variable torque

Mass Profile-

Max Speed:
Voltage Boost:
60 Hz
3%
The input is compensated to approximate a linear output.

Applications include fans, pumps and blowers.

Appendix 2 - Model Numbers \& Basic Build Standards

The Profiler model number groups define the voltage \& phases, horsepower, operating mode configuration and installed options.
Please check that your drive model is correct.

Appendix 3-Specifications

Input Power Supply

B1XX Models B2XX Models B3XX Models	Single Phase $100-125$ Volts or $200-250$ Volts, $50 / 60 \mathrm{~Hz}$ Single Phase, 200-250 Volts, $50 / 60 \mathrm{~Hz}$ 3-Phase, 200-250 Volts, 50/60Hz
Alarm Output	Normally open contact, rated up to 5A at up to 230 volts AC or 30 volts DC. Closes for Drive Healthy
Output Profiles	Selectable Volts - Hertz Profiles - Standard: 3 to 60 Hz (Constant Torque) - Extended: 3 to 120 Hz (Constant Torque To 60 Hz) - Fan: 3 to 60 Hz (Variable Torque) - Mass Flow: 3 to 60 Hz (Input Linearized For Output)
Ramp Time	0.5 to 30 seconds (Specials up to 1000 seconds)
Ambient Temp	Operation: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ Short term storage: $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

Environment	Protected, clean, dry, non-hazardous, pollution degree 2
Humidity	Max. 90% RH non-condensing
Altitude	Max. 3300 feet (1000M) above sea level, derate 1\% per 330 feet (100M) above 3300 feet (1000M)
Control Input	Non-isolated configurable control terminals
Protection	Drive trips and shows alarm indication for:

- DC link under voltage
- DC link over voltage
- Drive over temperature
- Motor overload
- Output short circuit
- Output ground fault

Appendix 4-Overload \& Motor Protection

The Profiler ${ }^{T M}$ B-Series drives provide modified $i^{2} t$ overload protection which ensures protection of the motor yet allows the application to benefit from the extremes of the motor rating characteristics.

The basic overload trip level is either preset to the drive full load rated current or it is set by one of the potentiometers on the front of the drive depending on the drive set up (see Parameter selection). If potentiometer operation is selected, it allows the basic overload trip level to be adjusted linearly between 50% and 150% of the drive nominal full load current.

The graph to the right shows the overload trip characteristics relative to the set level. Thus, by permitting small overloads for long durations and high overloads for short durations the drive minimizes the potential for nuisance tripping.

Typically the drive will allow the motor to run up to:
110% of set level for 14 minutes or to the thermal limit of the drive.
150% of set level for 30 seconds or to the thermal limit of the drive.
200% of set level for 8 seconds or to the thermal limit of the drive.

The drive trips instantly on output ground faults or short circuits:
Over $18 \mathrm{amps} \quad$ drives up to $0.75 \mathrm{hp} \& 1.0 \mathrm{hp}$ drives with brake
Over $30 \mathrm{amps} \quad 1.0 \mathrm{hp}$ to 2.0 hp drives
Over 54 amps 3.0 hp drives

Appendix 5-Alarms \& Troubleshooting

The drive has two LED's located on the front of the drive. The green LED indicates that power is applied to the drive and the red LED indicates a fault conditions as follows:

	Drive OK
Severe Under Voltage. The DC link voltage is below the level at which drive operation can	
be guaranteed. The outputs are shutdown and the microprocessor is reset.	

NOTE: A fault or power off condition will set the Drive Alarm Relay output contact (terminals 1 \& 2) to the normally open state.

Appendix 5-Alarms \& Troubleshooting (Continued)

No LED's are "On."

Verify line voltage is connected and present at the line terminals.

No output.

1. Verify motor is connected to the motor terminals.
2. Recheck control wiring and dip switch settings.
3. Verify that the proper control circuits are closed.
4. Verify that the drive is getting a speed setpoint.

No torque at low speeds.

1. Verify profile setting is correct for the application.
2. Select a higher starting speed setpoint.

Changing dip switch settings does not change the drive operation.
Cycle power off for at least 1 minute to reset the drive.
The drive trips due to a persistent overload condition.

1. The motor may not be sized to handle the load.
2. Try one of the parameter settings that allow overload adjustment.

The drive trips on over temperature.

Ambient conditions around the drive have exceeded $50^{\circ} \mathrm{C}$. Ensure the drive is properly ventilated.

The drive trips on over voltage.

1. Verify incoming line voltage
2. The ramps may be set too fast for the application.
3. A drive with a brake option may be required.

The drive trips on over current/ground fault.

1. Check motor wiring for a short circuit or ground fault condition.
2. The ramps may be set too fast for the application.
3. A drive with a brake option may be required.

Consult factory for additional assistance.

Phone: 410-604-3400
Fax: 410-604-3500
email: info@bardac.com
www: bardac.com

Appendix 6 - Brake Output Option (Option -B in model code)

The Brake Output option (if installed) allows regenerated braking energy from the motor to be dissipated in an external resistor (supplied separately) connected to the BRK- and BRK+ terminals.

The brake resistor should be rated for 450 volts DC and rated for both the peak and average power to be absorbed. In most cases, the brake resistor is used to dissipate the energy stored in the load inertia during deceleration. This energy is dissipated over the braking time, yielding a brake power:

$$
P_{\text {brake }} \approx \frac{I_{0}\left(\eta_{i}^{2}-\eta_{f}^{2}\right)}{182 t_{\text {brake }}} \quad \begin{array}{cl}
T & \text { is the kinetic energy to be dissipated (W) } \\
I_{0} & \text { is the inertia (kg m2) } \\
\eta_{i} & \text { is the initial speed (rpm) } \\
\eta_{f} & \text { is the final speed (rpm) }
\end{array}
$$

The resistor must be able to dissipate this amount of power for the braking time and this is usually constrained by the overload rating of the resistor. In addition, the resistor must be able to dissipate the average power which is determined by the braking power and the time spent braking in a cycle:

$$
P_{\text {avg }}=P_{\text {brake }} \frac{t_{\text {brake }}}{t_{\text {cycle }}} \quad \begin{aligned}
& \text { The resistor must be able to continuously dissipate this amount of power in the ambient } \\
& \text { temperature where it will be located. }
\end{aligned}
$$

Resistor Selection If the cycle time is greater than 10 times the braking time AND the braking time is less than 5 seconds, you may use a wirewound resistor rated for 10 times rated power for 5 seconds, subject to the ambient limits of the resistor as follows:

Resistor

$\underline{\mathbf{h p}}$	$\underline{\text { Ohms }}$
0.50	500
0.75	250
1.0	125

Watts
50
75
100

hp
1.5
2.0
3.0

Ohms
100
75
50

Watts
200
225
400

Appendix 7 - Dimensions

Appendix 8 - Final Set-up \& Warranty Extension

Enter the details of your application and drive settings for your records and file this original manual away for future reference. Model No. \qquad Serial No. \qquad Date of installation \qquad Supply \qquad ph \qquad volts \qquad Hz
DIP Switch Settings
ON
OFF
Pot Settings P1

\qquad

OFF
Application Description

COPY THIS PAGE AND MAIL OR FAX TO US FOR FREE 1 YEAR WARRANTY EXTENSION

