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Problem 1

a. The filament is faced nearly face on, thus we are looking through an edge-
on circle. The volumetric density nH can be found by dividing the given
column density NH by the average length of the filament that we see. The
filament has the shape of a circle, thus the distance that is looked though,
D, is not the same at each location. To find the average distance, 〈D〉, we
use the fact that we can make a right triangle between the radius of the
circle, R, half of the look-through distance D and the part of the triangle
perpendicular to the line of sight, which we call x. The relation between
the three is then D(x) = 2

√
R2 − x2. The average of D can be found by

integrating over x between 0 and R (or equivalently between −R and R.)

〈D〉 =

∫ R

0
D(x) dx

∫ R

0
dx

=

∫ R

0
2
√

R2 − x2 dx

[x]R0

=

∫ R

0
2
√

R2 − x2 dx

R

= 2
∫ R

0

√
1− x2/R2 dx

= 2R

∫ 1

0

√
1− y2 dy

= 2R

∫ π/2

0

√
1− sin2 θ cos θ dθ

= 2R

∫ π/2

0

cos2 θ dθ

= 2R

∫ π/2

0

1
2

+
cos 2θ

2
dθ

= 2R

[
1
2
θ +

1
4

cos 2θ

]π/2

0

=
πR

2
. (1)
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In the above sequence of equations two substitutions were used. The first
was y ≡ x/R and the second was y ≡ sin θ.
For this filament R = 2 pc, thus 〈D〉 = 9.69 · 1018 cm

nH =
NH

〈D〉 =
2 · 1022 cm−2

9.69 · 1018 cm
= 2.06 · 103 cm−3 . (2)

b. The total mass of the filament can be found by multiplying the average
density ρ by the total volume V of the filament. Here ρ is given by

ρ = mHnHµ , (3)

where mH is the hydrogen mass of 1.67 ·10−24 g and µ is the mean molec-
ular weight. For a molecular gas of Solar composition µ = 2.4. Using nH

from question a; ρ = 8.27 · 10−21 g/cm−3. The volume of the filament is
given by

V = π

( 〈D〉
2

)2

L = 3.64 · 1057 cm3 , (4)

where D is the diameter of 4 pc and L is its length of 16 pc. The total
mass of the filament is then

Mtotal = ρV = 8.72 · 10−21 g/cm−3 · 3.64 · 1057 cm3

= 3.01 · 1037 g = 1.51 · 104 M¯ . (5)

c. The line width of 13C16O has the same speed as the stars. The virial
speed, vvir =

√
GM/R, of the filament is also of the same order. This

is evidence for the fact that the stars are not on ballistic trajectories,
but are experiencing random motions together with the gas. It is thus
expected that over the typical age of the stars, the filamentary pattern
will be maintained.

Problem 2

a. The color excess, EB−V, is given by

EB−V = (mB −mV )− (MB −MV )
= (14.3− 12.8)− (0− 0) = 1.5 , (6)

where mB amd mV are the apparent magnitudes in the B- and V-band,
respectively, and MB and MV are the absolute mangitudes in the B-
and V-band, respectively. By definition, an A0 star has zero absolute
magnitude in all wavebands.

b. Using formula 2.16 from the book, AV is given by

AV = R EB−V = 3.1 · 1.5 = 4.65 . (7)
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c. Using formula 3.2 from the book, NH is given by

NH = AV /5.3 · 10−22 mag cm2 = 8.77 · 1021 cm−2 . (8)

d. Starting from formula 2.15b from the book

Eλ−V

EB−V
=

Aλ

EB−V
−R . (9)

This can be rewritten to

Aλ = EB−V

(
Eλ−V

EB−V
+ R

)
. (10)

The value of Eλ−V/EB−V for the K-band can be found in figure 2.7 in the
book. The K-band is centered on 2.2 µm, thus λ−1 = 1/2.2 = 0.45 µm−1.
The value of the extinction curve at 0.45 is ∼ −3. Together with the
previously calculated value for the color excess

AK = 1.5 (−3 + 3.1) = 0.15 . (11)

The factor by which the K-band flux from the star is attenuated can be
found by looking at formula 2.22 from the book an seeing that Fλ ∝
exp(−∆τλ). The following relation between Aλ and ∆τλ can be used

Aλ = 1.086∆τλ . (12)

Thus the K-band flux is attenuated by a factor of

exp(−∆τK) = exp(−AK/1.086) = 0.87 . (13)

Problem 3

a. Starting from R ≡ AV /EB−V, this equation can be rewritten by re-
membering the fact that you can also write EB−V as AB − AV . Thus
R ≡ AV /(AB − AV ). Furthermore, from formula 2.26 in the book we see
that Aλ ∝ ∆τλ and finally we know that τλ ∝ κλ. This implies that

R =
AV

AB −AV
=

κV

κB − κV
=

λ−n
V

λ−n
B − λ−n

V

, (14)

where the fact that κλ ∝ λ−n was used. This can also be compactly
written by dividing both the nominator and denominator by λ−n

V

R =
1

(λB/λV )−n − 1
. (15)

The B-band is centered on 4400 Å and the V-Band on 5500 Å. Thus

R =
1

(4400/5500)−n − 1
=

(
0.8−n − 1

)−1
. (16)
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b. Using formula 16 and the fact that R = 3.1 the value of n can be found
numerically to be n = 1.25. Comparing this to figure 2.7 in the book
the slope of Aλ/EB−V vs. λ−1 should be 1.25 between the B- and V-
band. Although the region between the B- and V-band is rather small,
the interstellar extinction curve appears to be linear inside. This is indeed
consistent with the expected almost linear slope of 1.25 that was found
before.

Problem 4

a. The distribution of MRN gives the relative number of grains per interval
in radius. It is given by

dn

da
∝ a−3.5 , (17)

with upper and lower cutoffs at 0.25 µm and 0.005 µm, respectively. The
average grain size can then by found by

〈a〉 =

∫ amax

amin
a n(a) da∫ amax

amin
n(a) da

=

∫ amax

amin
a−2.5 da∫ amax

amin
a−3.5 da

=

[− 2
3a−1.5

]amax

amin[− 2
5a−2.5

]amax

amin

=
5
3

(
0.25−1.5 − 0.005−1.5

0.25−2.5 − 0.005−2.5

)
= 8.31 · 10−3 µm

= 1.66 amin . (18)

b. The same procedure as in question a can be used to find 〈a2〉1/2:

〈a2〉 =

∫ amax

amin
a2 n(a) da∫ amax

amin
n(a) da

=

∫ amax

amin
a−1.5 da∫ amax

amin
a−3.5 da

=

[−2a−0.5
]amax

amin[− 2
5a−2.5

]amax

amin

= 5
(

0.25−0.5 − 0.005−0.5

0.25−2.5 − 0.005−2.5

)
= 1.07 · 10−4 µm2 . (19)

Taking the square root of this gives us

〈a2〉1/2 = 1.04 · 10−2 µm . (20)

c. Again applying the procedure from question a gives the following for
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〈a3〉1/3:

〈a3〉 =

∫ amax

amin
a3 n(a) da∫ amax

amin
n(a) da

=

∫ amax

amin
a−0.5 da∫ amax

amin
a−3.5 da

=

[
2a0.5

]amax

amin[− 2
5a−2.5

]amax

amin

= −5
(

0.250.5 − 0.0050.5

0.25−2.5 − 0.005−2.5

)
= 3.79 · 10−6 µm3 . (21)

Taking the cubic root of this gives us

〈a3〉1/3 = 1.56 · 10−2 µm . (22)

Problem 5

a. The total volume of a GMC and one clump are given by using the diameter
L that is given in Table 3.1 in the book. The diameter of a GMC is
LGMC = 50 pc and of a clump is on average Lclump = 2 pc.

VGMC = 4π
3

(
LGMC

2

)2
= 1.92 · 1060 cm−3 (23)

Vclump = 4π
3

(
Lclump

2

)2

= 1.23 · 1056 cm−3 . (24)

Now we need to find how many clumps are present inside a typical GMC.
For this we need to know how much of the total mass of the GMC is inside
clumps. Turning to the last paragraph of section 3.1.2 in the book, we
see that clumps comprise as much as 90% of the total molecular mass of
105 M¯. Thus

M total
clump = 0.9 · 105 M¯ = 9 · 104 M¯ . (25)

Since according to this table Mclump = 30 M¯, there are

N total
clump =

9 · 104

30
= 3 · 103 , (26)

clumps inside a GMC. The volume of all the clumps combined is then

V total
clump = Vclump N total

clump = 3.69 · 1059 cm3 . (27)

The filling factor is then given by

f =
V total

clump

VGMC
=

3.69 · 1059

1.92 · 1060
= 0.192 . (28)
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b. The number of clumps per unit is mass is given by

dN

dM
= N0

(
M

Mmin

)−1.5

, (29)

between Mmin < M < Mmax, where Mmin = 30 M¯ and Mmax = 103 M¯.
To get the total number of clumps, the consant N0 has to be found first.
To do this we need to find the total mass of the clumps in the GMC. This
mass can be found by integrating over M dN

dM as such

M total
clump =

∫ Mmax

Mmin

M N(M) dM =
∫ Mmax

Mmin

M N0

(
M

Mmin

)−1.5

dM . (30)

We already found in question a that M total
clump = 9 · 104 M¯, thus formula

30 can be rewritten as

N0 =
M total

clump

∫ Mmax

Mmin
M

(
M

Mmin

)−1.5

dM
. (31)

The total number of clumps is found by integrating formula 29 and now
formula 31 can be used to replace N0

N = N0

∫ Mmax

Mmin

(
M

Mmin

)−1.5

dM

= 0.9M total
clump

∫ Mmax

Mmin

(
M

Mmin

)−1.5

dM

∫ Mmax

Mmin
M

(
M

Mmin

)−1.5

dM

= 0.9M total
clump

∫ Mmax

Mmin
M−1.5 dM

∫ Mmax

Mmin
M−0.5 dM

= 0.9M total
clump

[−2M−0.5
]Mmax

Mmin

[2M0.5]Mmax
Mmin

= 0.9M total
clump

M−0.5
min −M−0.5

max

M0.5
max −M0.5

min

= 520 clumps (32)

However, if we assume that all the clumps have the same mean density as
in question a this will lead to the same filling factor. The amount and sizes
of the clumps may have changed, but the total mass is still 9 · 104M¯ and
the average density is also assumed to be the same and since V = M/ρ,
the volume will remain the same.

c. The space between the clumps in a GMC is assumed to be filled by a HI
solar composition gas. This remaining volume is

VHI = VGMC − Vclump N total
clump = 1.55 · 1060 cm3 , (33)
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where the values from question a were used. I will assume that the average
density of the HI gas to be nHI = 30 cm−3, which has been taken from
section 2.2.1 on page 38 of the book. The density of the HI gas is then
given by

ρHI = mH nHI µHI = 1.67 · 10−24 g · 30 cm−3 · 1.3 = 6.51 · 10−23 g/cm−3
.

(34)
The total mass of the HI gas is then

MHI = VHI ρHI = 1.01 · 1038 g = 5.05 · 104 M¯ . (35)

This is about 50% of the total molecular mass of the GMC.

Problem 6

a. The clumps will have a mean free path given by λmfp = (nσ)−1, where n
is the number density of the clumps and σ is the cross section of a clump.
The cross section is assumed to be the projected area, thus taking from
Table 3.1 in the book that the typical clump diameter is 2 pc, the cross
section of a clump is

σ = πR2 = 2.99 · 1037 cm2 . (36)

From question 5a, where typical clump properties were used, there are
∼ 3 · 103 clumps in a GMC. The GMC has a volume of 1.92 · 1060 cm3,
thus

n = N/V = 1.56 · 10−57 cm−3 . (37)

The mean free path of a clump is then

λmfp =
1

nσ
= 2.14 · 1019 cm , (38)

or 6.93 pc.
The relative speed of the clumps is assumed to be the virial speed given by
vvir =

√
GM/R, where M and R correspond to the whole GMC. Taking

the values of M and R from Table 3.1 gives us a virial speed of

vvir =

√
6.673 · 10−11 · (105 · 2 · 1030)

25 · 3.086 · 1016
= 4.16 km/s . (39)

Thus the average collision time is given by dividing the mean free path by
the virial speed

tcoll = λmfp/vvir = 1.63 · 106 yr . (40)

Note that this timescale is even shorter than the free fall timescale of
(Gρ)−1/2 ∼ 5 · 106 yr. The assumptions made about the clumps are prob-
ably too simplistic and if we turn to the paper of Blitz & Shu (1980) we
see that they get a value of tcoll ∼ 107 yr, which still is only slightly longer
than their tff of ∼ 2 · 106 yr.
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b. The effect of gravity can affect the motion of a clump before impact. The
closest approach can be significantly less than the initial impact parameter
b. The impact parameter is defined as the perpendicular distance between
the path of a projectile and the center of the object that the projectile is
approaching.
To get find an algebraic expression for fgrav we need to take energy con-
servation and angular momentum conservation into account. We look in
the frame where one of the clumps, ‘the projectile’, is moving and the
other clump that the projectile is approaching, ‘the target’, is standing
still. The initial angular momentum is then given by

Linit = r × p = r ×mv0

= r sin θ mv0 = bmv0 , (41)

where θ is the angle between the velocity vector and radius towards the
target, m is the mass of the projectile and v0 is its initial (relative) velocity.
In the last equation the fact that r sin θ = b was used.
At the closest approach the angle between r and p is a right angle so that
Lend = r × p = Rmvmax, where R is the radius of the target and vmax

is the speed of the projectile. Conservation of angular momentum then
implies that

Linit = Lend → bmv0 = Rmvmax → vmax =
bv0

R
. (42)

Conservation of energy at these times gives the following relation

1
2
mv2

0 =
1
2
mv2

max −
GmM

R
, (43)

where M is the mass of the target. Dividing out m and replacing vmax by
formula 42 implies that

v2
0 =

(
bv0

R

)2

− 2GM

R
→ b2 = R2

(
1 +

2GM

Rv2
0

)
, (44)

The cross section of the target is thus effectively increased from πR2 to
πR2

(
1 + 2GM/Rv2

0

)
. The gravitational focusing factor is therefore

fgrav =
(

1 +
2GM

Rv2
0

)
(45)

Filling in the numbers for M , R and v0 taken from question a or Table
3.1, tcoll is reduced by a factor of

f−1
grav =

(
1 +

2 · 6.673 · 10−11 · 30 · 2 · 1030

1 · 3.086 · 1016 · (4.16 · 103)2

)−1

= 0.985 (46)

It appears that graviational focusing is only of small importance for the
clumps in the GMC.

8


