
AY250 Assignment 2

due: Thursday, Sept 23, 2010

1 - (N.B. Reading Sections 5.6 and 6.3 will be helpful.) The OH molecule is only useful
for measuring B along the line of sight provided the molecule is sufficiently abundant.
Let us see why, in dense cores, this issue has limited the available results. Anticipating
the discussion in Chapter 7, OH is produced by cosmic ray ionization of molecular
hydrogen. The volumetric production rate may be expressed as p1 ζ(H2) nH2

. Here, p1

is a numerical constant, and ζ(H2) (which has units of s−1) is the rate at which cosmic
rays ionize each hydrogen molecule.

(a) In diffuse clouds, OH is destroyed by ambient ultraviolet photons. If the
characteristic photodissociation time is τphoto, show that the steady-state ratio nOH/nH2

is independent of cloud density, a situation that is favorable observationally.

(b) In clouds dense enough that ultraviolet radiation is excluded, OH is destroyed
primarily by reaction with ambient atomic hydrogen:

OH + O → O2 + H ,

where the associated rate constant is k = 5 × 10−11 cm3 s−1. Given that nO/nH2
is

itself a fixed ratio, show that nOH is now independent of cloud density. Thus, nOH/nH2

falls as nH2
rises.

An independent way of measuring B is through the polarization of starlight. The pattern
of polarization vectors gives the direction of B⊥, the field component in the plane of the
sky. The field is not straight, but has wiggles. These wiggles plausibly arise from cloud
turbulence, which we suppose to be an isotropic superposition of hydromagnetic waves.
As will be shown in Chapter 9, such waves travel at the Alfvén speed VA ≡

√

B/4 π ρ,
where ρ is the mass density. If y(x, t) is the curve representing a projected field line,
then we may write

y = y◦ cos k (x − VA t) ,

where the wave amplitude y◦ and wavenumber k are constants.

(c) If y′ ≡ ∂y/∂x and ẏ ≡ ∂y/∂t, argue that

(y′)
2

= (∆θ)
2

(ẏ)
2

=
1

3
∆V 2

turb .

Here, ∆θ is the mean angular excursion of a field line, while ∆Vturb is the inferred,
three-dimensional turbulent velocity.

(d) Derive an expression for B⊥ in terms of ρ, ∆Vturb, and ∆θ.
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(e) A portion of the Taurus filaments called B18 is observed to have
∆Vturb = 1.7 km s−1, ∆θ = 29◦, and a hydrogen number density nH = 700 cm−3.
What is B⊥?

2 - In Section 7.1, we saw how the cosmic ray ionization rate of hydrogen can be
inferred from the observed abundance of OH, whose production is initiated by this
ionization. There are analogous and complementary schemes involving other molecules.
Here we outline such a method applied to the deuterated hydrogen molecule HD, which
is observed in diffuse clouds irradiated by background massive stars.

(a) After a hydrogen atom is ionized by a cosmic ray proton (see equation (7.6)), the
ion undergoes charge exchange with ambient deuterium:

H+ + D → D+ + H .

This reaction can proceed in reverse, at a rate found by multiplying the forward one
by the Boltzmann factor exp (−∆E/kb T ). Here, ∆E ≡ ID − IH , where ID and IH

are the ionization potentials of deuterium and hydrogen, respectively. These may be
obtained from equation (2.1), using the appropriate reduced mass for the electron. What
do you conclude about the rates of forward and backward reaction rates in an HI cloud
of temperature 100 K?

(b) From your result in (a), what is the steady-state ionization fraction of deuterium
atoms, nD+/nD, compared to that of hydrogen atoms, nH+/nH?

(c) Ionized deuterium creates HD through an ion-molecule reaction:

D+ + H2 → HD + H+ ,

whose rate constant (with units of cm3 s−1) we denote as kDH. The molecule HD
is destroyed by photodissociation, with a characteristic time τphoto. Write down the
steady-state number density of HD in terms of kDH, τphoto, and the densities nD+ and
nH2

.

(d) The H+ created by cosmic rays is principally destroyed by reaction with atomic
oxygen, as in equation (7.8). Let the associated rate constant be kOH. Write an
expression for ζ(HI) in terms of the given rate constants, τphoto, and the observed
abundance ratios nHD/nH2

, nO/nH , and nD/nH .

3 - Consider the interstellar radiation field, whose mean intensity per logarithmic
frequency interval, ν Jν , is plotted in Figure 7.4.

(a) According to the text, the total energy density of this radiation, integrated over all
frequencies, is urad = 1.1 eV cm−3. What is the gas temperature Tg of a hypothetical
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HI cloud with nH = 100 cm−3 whose thermal energy density matches urad? Compare
your answer to the typical temperature of an HI cloud and comment.

(b) Imagine a more opaque molecular cloud bathed in the interstellar field, which is
assumed to be isotropic. Let Fν be the specific flux impinging on a planar section of
the cloud. What is ν Fν in terms of ν Jν , the quantity shown in Figure 7.4?

(c) In the wavelength range 103 Å < λ < 104 Å, plot ν Fν as a function of ν at visual
extinctions AV of 3, 5, and 10 mag. Use the interstellar extinction curve, Figure 2.7, to
make these plots

4 - Ultraviolet radiation within HI clouds ejects electrons from grain surfaces. In steady
state, this efflux is matched by an influx of ambient electrons colliding with the surface.
By balancing these two rates, we may determine Ze, the net charge on the grain.

(a) Consider a spherical grain of radius a and charge Ze. What is the cross section σ(v)
this object presents to electrons of mass me streaming by with speed v?

(b) Suppose the electrons have number density ne and share the gas temperature T .
Then Rin, the rate at which they strike a single grain, is given by ne 〈v σ(v)〉, where the
average is over a Maxwell-Boltzmann distribution. Find an analytic expression for Rin.

(c) Show that the outgoing rate of electron emission is

Rout = 4 π2 a2 y

∫

Jν

hν
dν .

Here, y is the photoemission yield, i.e., the fraction of incoming ultraviolet photons that
actually eject an electron. Theory gives y ≈ 0.1. The quantity Jν is the mean intensity
of the interstellar radiation field (see Fig. 7.4), and the integral is over photon energies
from 10 to 13.6 eV.

(d) By equating Rin and Rout, make a numerical estimate of Z for a grain of radius
a = 0.1 µm. You may use the typical HI cloud values ne = 0.05 cm−3 and T = 100 K.

5 - Within the interstellar medium, heating of the gas occurs primarily through the
photoelectric effect on grains, as described quantitatively in Section 7.2. The main
cooling mechanism is the emission of the 128 µm fine-structure line of C II.

(a) Calculate analytically and plot the gas temperature Tg as a function of the density
nH in the range −2 < log nH < +3. Compare your result to Figure 2.5a, and comment
on any differences.

(b) Similarly, plot the gas pressure, P/kB over the same density range. Compare to
Figure 2.5b.
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(c) Assume the actual pressure and temperature of the interstellar medium is
P/kB = 3000 K cm−3. What are your predicted density and temperature of the cold
and warm neutral medium? How does your result for the former compare with real HI
clouds?

6 - The cooling flux by CO from a molecular cloud is given by FCO in equation (7.34).
Let us derive this important result another way, starting from the volumetric cooling
rate, Λ∗

CO, in equation (7.35).

(a) Since the cooling radiation is isotropic, Λ∗

CO is related to the emissivity jν by

Λ∗

CO = 4 π jν ∆ν ,

where ∆ν ≡ ∆νJ+1,J . Now use Kirkhoff’s law, equation (2.30), to express
FCO = π Bν(Tg)∆ν in terms of Λ∗

CO, the mean mass density ρ, and κν .

(b) If D is the cloud diameter, then we may write

ρ κν =
τJ+1,J

D
.

Here, τJ+1,J is given in terms of τ10 by equation (7.30). Using equation (7.35) for Λ∗

CO,
together with equation (7.28) for τ10, find FCO.

4


