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Problem 1

Part a

We use the given production and destruction rates to write an equation for the rate of change of nOH

with time:

d
(
nOH

)
dt

= p1ζnH2 −
nOH

τ

When the system reaches a steady state, the left-hand side of this equation will be zero. We can
then solve for the ratio of the number densities to obtain

nOH

nH2

= p1ζτ

This ratio does not depend on the cloud density, as desired.

Part b

We can write another equation for the rate of change nOH given the new destruction rate:

d
(
nOH

)
dt

= p1ζnH2 − (k)(nOH)(nO)

But we are told that the ratio nO/nOH is constant. If we denote this constant by α, then we may
replace nO in the above equation with (α)(nH2). The equation becomes:

d
(
nOH

)
dt

= nH2

[
p1ζ − (k)(nOH)(α)

]
Once again, when the system reaches a steady-state, the left-hand side goes to zero. Since nH2 is

not zero, the only way this condition can be achieved is if

p1ζ = (k)(nOH)(α) =⇒ nOH =
p1ζ

kα
.

We see that in this case nOH does not depend on cloud density, as claimed.
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Part c

The angular excursion is related to the derivative of y with respect to x by

tan(∆θ) =
∂y

∂x

If the wiggles are small, then we may make the approximation tan(∆θ) ≈ ∆θ. This yields the first
desired relation.

The rate of change of the apparent wiggle height with respect to time should be equal to the
component of the turbulent velocity perpendicular to the field line, in the plane of the sky. Call this
component vx. We can write

∆V 2
turb = v2

x + v2
y + v2

z

Assuming the turbulence is isotropic, the three terms on the right-hand side should be of equal
magnitude. This gives us

v2
x = ẏ2 =

1
3

∆V 2
turb

and we have our second desired relation.

Part d

We use the wave solution for y as a function of x , as well as the results from part c above, to write

(∂y
∂t

)2
= k2V 2

Ay
2
0 sin2(kx− kVAt) =

1
3

(∆Vturb)2(∂y
∂x

)2
= k2y2

0 sin2(kx− kVAt) = (∆θ)2

We can now divide the top equation by the bottom equation, write VA in terms of ρ and B⊥, and solve
for B⊥ to obtain

B⊥ =

√
4πρ

3
∆Vturb

∆θ

Part e

Plugging in the given values, and using ρ = nH2(2mH) we find

B⊥ =

√
(4/3)π(700)(2)(1.67× 10−24)(1.7× 105)2

(29π/180)2
≈ 33 µG

Problem 2

Part a

First, we can establish that since deuterium has a more massive nucleus than hydrogen, its ionization
potential will be greater, ID > IH. Then, if we define ∆E ≡ ID − IH, we have ∆E > 0. The rate
constants will then be related via a Boltzmann factor in the following manner:

kforward

kbackward
= e
− ∆E
kBT

We conclude that the backward reaction is favored. To be more quantitative we need to compute ∆E.
Let µed denote the reduced mass of the electron when a deuteron is the nuclues, and let µep denote
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the reduced mass of the electron when a proton is the nucleus. Then, using the formula for reduced
mass, and the fact that the ionization potential is proportional to reduced mass, we find

ID

IH
=
µed
µep

=
1 +me/mp

1 +me/md
≈ 1 +

me

mp
− me

md
= 1 +

me

mp

(
1− mp

md

)
Since mp

md
≈ 1

2 , we have
µed
µep
≈ 1 +

me

2mp

This lets us derive a simple expression for ∆E:

∆E = ID − IH = IH

(ID

IH
− 1
)

=
IH

2
me

mp

Plugging in the values of the physical constants and letting T = 100K we have ∆E
kBT

= 0.43 and so

kforward

kbackward
= e−0.43 = 0.65

Part b

We can write an equation for the rate of change of the deuterium concentration with respect to time
in terms of the forwards and backwards rate constants.

d
(
nD+

)
dt

= (kforward)(nH+)(nD)− (kbadkward)(nH)(n+
D)

When a steady state is reached the left-hand side equals zero. We can then solve for the density ratios
in terms of the ratio of the rate constants, which we found in part a and which we will label as γ ≡ 0.65.
We obtain

nD+

nD
= γ

nH+

nH

Part c

The rate of change of nHD is given by

d
(
nHD

)
dt

= (kHD)(nD+)(nH2)− nHD
τphoto

Setting the left-hand side to zero for a steady sate, we solve for nHD to obtain

nHD = (kHD)(nD+)(nH2)(τphoto)

Part d

The rate of change of nH+ is given by

d
(
nH+

)
dt

= ζ(nH)− (kOH)(nH+)(nO)

From part b, we know that

nH+ = nH
nD+

nD

1
γ

Then we can use our result from part c to rewrite nD+ in terms of the other constants. Finally, setting
the rate of change of the hydrogen ion concentration to zero and solving for ζ we obtain

ζ =
kOH

kHD

nO
nH

nH
nD

nHD

nH2

( 1
τpγ

)
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Figure 1: Blue curve is AV = 0, Green curve is AV = 3, pink curve is AV = 5, goldl curve is AV = 10

Problem 3

Part a

The energy density of a gas of point-like particles is given by

u =
3
2
nKT

We may then solve this equation for temperature and plug in the appropriate values of n and u to find
that the temperature is approximately 85 Kelvin. This roughly agrees with the listed temperature of
80 K found in figure 2.2 of the text, and suggests that the cloud is in thermal equilibrium with the
radiation field.

Part b

Since the radiation is isotropic, the specific intensity of the interstellar radiation, Iν , equals the mean
intensity Jν . From the definition of radiative flux in terms of specific intensity, we find

νFν = ν

∫ 2π

0
dφ

∫ π/2

0
(Jν cos θ) sin θdθ = πνJν

Part c

The graphs are shown in figure 1. To make these graphs, I calculated the value of E(B − V ) for
each visual extinction by using the relation E(B − V ) = RAV , and then determined the extinction
at each frequency using the visual extinction curve. I converted these extinctions into optical depths
using equation 2.26, and then multiplied the values of νJν from figure 7.4 by π times e raised to
the negative optical depth. Note the small bump seen in the flux in the extreme UV regime when
significant extinction is present.
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Problem 4

Part a

In the first assignment we determined how an attractive force such as gravity can focus collisions
so that the cross-section becomes larger than the geometric cross-section. In this problem we have
focusing by Coulomb attraction, rather than gravity. An analysis identical to the one presented in the
last assignment yields

σ = πa2

(
1 +

2Ze2

meav2

)
Part b

We perform an average over the Boltzmann speed distribution:

ne < vσ >=
∫ ∞

0
(ne)(v)(πa2)

(
1 +

2Ze2

meav2

)(
me

2πkbT

)3/2

4πv2 exp
(
− mv2

2kbT
)
dv

We may then perform the change of variable

x ≡ mv2

2kbT

Our expression for the rate of incoming electrons becomes

Rin = neπa
2

√
kbT

2me

4π
π3/2

[ ∫ ∞
0

xe−xdx+
Ze2

akbT

∫ ∞
0

e−xdx
]

Both of the definite integrals evaluate to exactly unity. So we finally have

Rin = neπa
2

√
8kbT
πme

[
1 +

Ze2

akbT

]
We note that every factor in the above expression has a direct physical interpretation: Rin equals the
number density of electrons times the geometric cross-section times the mean velocity of a Maxwellian
distribution times a correction factor based on the ratio of electric potential energy at the surface of
the grain over thermal energy.

Part c

As we showed in problem 3b, the radiative flux at a frequency ν impinging on a planar surface is πJν
(from an isotropic radiation field). Since the surface area is 4πa2, the energy per time hitting the
surface is 4π2a2Jν . Thus, the rate at which photons hit is 4π2a2Jν

hν . We multiply by y to account for
the photon conversion efficiency, and integrate over the suitable frequency range, to obtain the desired
expression.

Part d

According to figure 7.4 in the text, the quantity νJν is roughly constant at 10−3.9 erg cm−2 s−1 in the
range of frequencies corresponding to energies between 10 and 13.6 eV, which are ν1 = 2.418 × 1015

Hz to ν2 = 23.289× 1015 Hz. Therefore the integral in the expression for Rout can be simplifed to∫ ν2

ν1

νJν
ν2h

dν ≈ 10−3.9 erg cm−2 s−1

h

∫ ν2

ν1

1
ν2
dν =

10−3.9 erg cm−2 s−1

h

( 1
ν1
− 1
ν2

)
5



Figure 2: Approximate temperature versus density of interstellar gas

After plugging in the appropriate values for a, ne and T and setting Rin = Rout, our equation
reduces to approximately

(9.76−5 Hz)[1 + Z(1.67)] = 7.24× 10−4 Hz =⇒ Z ≈ 4

Problem 5

Parts a and b

An expression for the heating rate ΓPE is found at the bottom of page 193, and an expression for the
cooling rate ΛCII is found near the bottom of page 200. Setting them equal and solving for temperature
yields

Tg =
92K

ln
(

(0.1)nH
cm−3

)
We can find an expression for P/kb by multiplying the above expression for temperature by nH .

The plots can be found in figures 2 and 3.
Note that these plots match those found in page 39 of the textbook at high density, but they begin

to vastly overestimate the temperature and pressure at densities below about 5 cm−3, and eventually
they diverge as density drops towards zero. This disagreement is to be expected, because we learn
in section 2.2 of the text that at low densities, Lyman alpha emission becomes an important cooling
mechanism, an effect that we have not accounted for in this analysis.

Part c

We must solve the following transcendental equation for nH :

3000 K cm−3 =
nH(92 K)

ln
(

0.1nH
cm−3

)
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Figure 3: Approximate P/kb versus density of interstellar gas

Note that the shape of the graph in figure 3 implies that we should expect only two values of nH
to satisfy this equation, rather than three as was the case in section 2.2 when a more exact cooling
function was used. Therefore, we expect the smaller solution to correspond to point B in figure 2.5
from the text, rather than point A. We must keep this limitation in mind when we compute a density
and temperature for the warm neutral medium.

Using a computer algebra system such as Mathematica, the two solutions to the above equation
are approximately 17 and 56 cm−3, which correspond to temperatures of approximately 180 K and
53 K. The latter temperature is a near perfect match to the value of 50 K given in the text. The
former temperature is about a factor of 40 too small compared to the actual temperature of the warm
neutral medium, which is given in the text as approximately 7000 K. This disagreement for the warm
temperature is to be expected, given the limitations of our model discussed above.

Problem 6

Part a

Kirchoff’s law tells us
Bν =

jν
ρκν

In the statement of the problem we are also given an equation to express jν in terms of Λ∗CO and ∆ν .
Then using the expression for FCO given in the problem, and substituting for Bν and jν using the
aforementioned relations, the factors of ∆ν cancel and we find

FCO =
Λ∗CO

4ρκν

Part b

We start with our expression for FCO from part a and then substitute for ρκν using the relation given
in the problem. We now have
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FCO =
Λ∗COD

4τJ+1,J

Next we plug in for τJ+1,J using equation 7.30, and for Λ∗CO using the first equality of 7.35. Our
expression for FCO now contains a factor of τ10 in the denominator. We will use equation 7.28 to
substitute for τ10, but there are a few considerations we must keep in mind:

First, the J = 1 state is 3 times degenerate (the quantum number M can take values of -1, 0, or
1), while there is only one state corresponding to J = 0. Thus, the ratio g1

g0
that appears in equation

7.28 is equal to 3.
Second, we note that the partition function Q that appears in equation 7.28 is equal to 2kbT

hν10
, and

using equation 7.31 this is equal to 2θ.
Third, the column density NCO that appears in equation 7.28 can be rewritten as nCOD.
As a final note, the factor ∆E10 that appears in the expression for Λ∗CO can be rewritten as hν10.
After making the above substitutions and performing the immediate cancellations, we have

FCO =
2πhν4

10

c3
(J + 1)4∆V

exp
[
− (J+1)(J+2)

2θ

]
exp

[
J(J+1)

2θ

]
1− exp

[
− (J+1)

θ

]
This is almost what we want, except for that final factor containing exponentials. We can add the two
exponents in the numerator and the fraction becomes

exp
[
− (J+1)

θ

]
1− exp

[
− (J+1)

θ

]
But now if we multiply by one in the form of exp

[
(J+1)
θ

]
/ exp

[
(J+1)
θ

]
, then our final expression for

FCO matches that of the first equality in 7.34.

8


