
AY250 Assignment 3

due: Thursday, Oct 7, 2010

1 - Consider an infinite planar slab of gas, whose density ρ only varies in the z-direction.
The slab is isothermal, with a uniform sound speed aT . The structure is in hydrostatic
equilibrium, where the only source of gravity is the gas itself. We wish to find ρ(z),
where z is the height above the midplane.

(a) Write down the condition of hydrostatic equilibrium and Poisson’s equation.
Combine these to find a second-order differential equation for ρ(z).

(b) Define a nondimensional density δ ≡ ρ/ρ◦ and a nondimensional height
ζ ≡

√

4πGρ◦/a2
T z. Using these new variables, write a simplified differential equation

for δ(ζ). What are the boundary values δ(0) and δ′(0)?

(c) Solve this equation for δ(ζ) analytically. Transform your answer into an expression
for ρ(z).

2 - Let us calculate the gravitational potential energy W of a pressure-bounded, singular
isothermal sphere. That is, we will determine the coefficient f in the expression

W = −f
G M2

◦

R◦

,

for a sphere of mass M◦ and radius R◦. We will do the calculation two ways. (a)
Calculate U , the sphere’s thermal energy. Express your result in terms of G, M◦, and
R◦.

(b) From Appendix D, the virial theorem in this case reads

2 U + W = P

where

P ≡

∫

P r · n d2x .

Using your result from part (a), calculate W, in terms of the same three quantities.
Thus, determine f .

(c) As a complementary approach, first use Poisson’s equation (9.5a) to calculate the
gravitational potential Φg. For the density on the righthand side, use equation (9.8).
This will give you Φg inside the sphere, up to an additive constant. Choose this constant
so that Φg(r) joins smoothly to the proper external potential, i.e., one that goes to zero
at infinite distance.
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(d) Finally, use the general expression

W =
1

2

∫

ρ Φg d3x ,

to derive the second form for the potential energy. Verify that f agrees with your
previous answer.

3 - We may understand the gravitational stability of a magnetized cloud by application
of the virial theorem. The analysis is approximate, but physically instructive.

(a) Suppose the cloud is an isothermal sphere of mass M , radius R, and sound speed
aT . Use the virial theorem in the form of equation (3.16) (with T = 0) to find an
expression for B, the mean magnetic field. Ignore factors of order unity when evaluating
the gravitational energy W.

(b) Suppose now that the cloud is so cold that we may neglect its thermal energy
entirely. Find the cloud’s mass, MΦ, in terms of G and Φcl, the magnetic flux that
threads it. Compare your answer to equation (9.58).

(c) In the case where U is not negligible, the critical mass Mcrit is larger than MΦ.
Again applying the virial theorem, together with your result from (b), find Mcrit in
terms of MΦ and the MJ , the Jeans mass in equation (9.24). Your result will be an
implicit equation for Mcrit.

(d) If we now equate MJ and MBE, then your last result gives Mcrit, again implicitly,
in terms of MBE and MΦ. By contrast, equation (9.57) is an explicit solution. Show
numerically, by testing various values of MBE/MΦ, that the two equations give similar
values of Mcrit/MΦ. Indicate the limit of validity of equation (9.57) as an approximate
solution. That is, how large can Mcrit be relative to Mφ for the equation to hold?

4 - Let us explore further Alfvén waves traveling in some oblique direction to the
background magnetic field B◦. Consider first their phase velocity Vphase, i.e, the speed
at which the field disturbance travels. From the dispersion relation of equation (9.81),
Vphase ≡ ω/k = VA cos θB, where θB is the angle between B◦ and the wave vector k.

(a) Next determine the wave’s group velocity, which characterizes its transmission of
energy. In general, the vector group velocity Vgroup is found from the dispersion relation
ω = ω(k) by

Vgroup ≡
∂ ω

∂ k
.

Find the direction and magnitude of Vgroup for oblique Alfvén waves.
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(b) Show that δu is still antiparallel to δB, just as in Alfvén waves that travel along
the background field. Find the scalar coefficient relating these two vectors and compare
your answer to equation (9.89).

(c) From (b), find the ratio of the magnetic energy density of the wave, |δB|2/8π, to its
kinetic energy density (ρ◦/2) |δu|2.

(d) The wave is associated with a current density

δj =
c

4 π
∇ × δB ,

where δB (r, t) now represents the full, traveling wave perturbation, as in
equation (9.61). This current, in turn, creates a Lorentz force, whose magnitude per
unit volume is

f =
δj

c
× B◦ .

Show that the force driving the wave is entirely due to magnetic tension rather than
magnetic pressure.

5 - The physics of ambipolar diffusion is elucidated by considering an infinite, planar
slab of self-gravitating gas, initially supported by a combination of thermal and magnetic
pressure. The gas is isothermal, with sound speed aT , and the magnetic field B = B x̂
lies wholly in the plane. Any initial field gradient ∂B/∂z smooths out with time. Here,
z is the coordinate normal to the plane. Our goal here is to show that B(z, t) is governed
by a diffusion equation.

(a) Consider the ion-neutral drift velocity vdrift. Rewrite equation (10.3) in terms of
the z-gradient of the magnetic pressure, B2/(8 π). Your expression should also contain
the neutral and ion mass densities, ρ and ρi, respectively, as well as the ion-neutral
drag coefficient γ ≡ 〈σinu

′

i〉/mi, where mi is the ion mass. In what direction is vdrift?
Interpret your answer physically.

(b) Show that equation (10.4) for the evolution of B can be rewritten as an expression
for the convective time derivative of the scalar quantity B/ρ. The convective time
derivative is

D

Dt
≡

(

∂

∂t

)

z

+ u

(

∂

∂z

)

t

,

where u is the velocity of the neutrals.

(c) It is convenient to change the independent spatial variable from z to σ, the surface
density from the midplane z = 0 to height z:

σ ≡

∫ z

0

ρ (z′, t) dz′ .
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Recast your expression for vdrift from (a) in terms of the σ-gradient of magnetic pressure.

(d) Similarly, rewrite your result from (b) as a time-derivative of B/ρ at fixed σ. (Hint:
You will need to invoke mass continuity, equation (3.7).) Combine these results to
obtain a partial differential equation for B (σ, t). Your equation will contain ρi, which
is given in terms of ρ by equation (8.36).

(e) This final result should be in the form of a nonlinear diffusion equation. What is
the characteristic time tdiff for a magnetic field of average magnitude B to diffuse out
of a slab with total mass density σtot? Show that tdiff is a dimensionless multiple of
aT /(G σtot), the vertical crossing time of the slab. (Hint: What is the relationship of B
and σtot when thermal and magnetic pressures are comparable?)

6 - Equation (10.34) gives the density profile inside the rarefaction wave of a collapsing,
protostellar cloud. This equation was derived assuming steady-state flow and neglecting
the gravitational pull of material outside the protostar on the infalling gas. Let us test
both of these assumptions.

(a) Let R(t) be the radius of the rarefaction wave a time t after protostar formation. If
the velocity is truly free-fall inside the wave, what is ∆t, the transit time from R(t) to
the origin?

(b) What is ∆t/t? Under what circumstances is the steady-state assumption valid?

(c) Using ρ(r) from equation (10.34), what is the mass ∆M inside the wave?

(d) What is ∆M/M∗? Can the gravity of the falling gas indeed be neglected?
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