
AY250 Assignment 4

due: Thursday, Oct 21, 2010

1 - A star of mass M∗ is embedded in a large, diffuse cloud. The sound speed in
the isothermal gas is aT , and its density far from the star is ρ∞. Consider the steady-
state, spherical accretion of gas onto the star. Neglecting the self-gravity of the gas,
equations (10.28) and (10.29) yield

Ṁ = 4 π r2 ρ u

u
∂u

∂r
= −a

2

T

ρ

∂ρ

∂r
− GM∗

r2
.

Here, we have let u denote the infall speed (the negative of our usual convention), and
have set ∂u/∂t = 0 in the momentum equation, as is appropriate in steady state. The
problem is to derive the accretion rate Ṁ .

(a) Define a nondimensional distance x ≡ r a2

T/(GM∗), a nondimensional velocity
y ≡ u/aT , and a nondimensional density z ≡ ρ/ρ∞. Finally, define a nondimensional
accretion rate by

λ ≡ Ṁ a3

T

4 πG2M2
∗ ρ∞

.

Rewrite the mass continuity and momentum equations in terms of x, y, z, and λ.

(b) Eliminate z between these two equations to find an algebraic relation between y, x,
and λ. To do this, you may assume that y vanishes at large x.

(c) There are many different solutions for y(x), depending on the value of λ. In the
physically relevant solution, y increases monotonically for decreasing x, diverging at
x = 0. Find λcrit, the unique value of λ for which the solution behaves in this manner.
Thus, derive a dimensional expression for Ṁ .

2 - In the previous problem, we assumed a constant stellar mass M∗. However, as a
result of the finite accretion rate Ṁ , this mass will increase.

(a) Write a differential equation for M∗(t). Your equation should contain, in addition
to M∗ and t, λcrit, G, ρ∞, and aT .

(b) Let M◦ be the initial stellar mass. Define a nondimensional mass m ≡ M∗/M◦, and
a nondimensional time τ ≡ t

√
Gρ∞. Finally, let β be the following nondimensional

quantity:

β ≡ 4 π λcritG
3/2M◦ ρ∞

1/2

a3

T

.
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Recast your differential equation as one for m(τ). The equation should only contain m,
τ , and β.

(c) Solve the nondimensional equation analytically. What happens to m(τ) at late
times?

(d) More generally, does this picture of steady-state flow apply to accreting protostars?

3- Consider how differently radiation propagates within the protostellar dust envelope
and the opacity gap. In spherical geometry, for a radiation field that is azimuthally
symmetric, the radiative transfer equation becomes

µ
∂ Iν
∂ r

+

(

1 − µ2
)

r

∂ Iν
∂ µ

= −ρ κν Iν + ρ κν Bν .

Here, µ is the cosine of the angle between the local direction of radiation and the
outward, radial direction. On the righthand side of this equstion, we have assumed that
the emission, here from dust, is thermal, and employed Kirkhoff’s law. We shall be
interested in the energy density, energy flux, and momentum flux (i.e., pressure) of the
radiation field:

urad ≡ 2π

c

∫

dν

∫

dµ Iν

Frad ≡ 2π

∫

dν

∫

dµµ Iν

Prad ≡ 2π

c

∫

dν

∫

dµ µ2 Iν .

(a) Find an ordinary differential equation for the radial variation of Prad. Your equation
will also contain urad, Frad, and a flux-weighted mean opacity κ.

(b) Since Frad is known from the luminosity, L = Lacc, we may solve this equation if
we know a relationship between Prad and urad. It is conventional to write

Prad = f urad ,

where f is called the Eddington factor. Find f for the nearly isotropic field in the
dust envelope. Assuming additionally that the radiation field is nearly blackbody, so
that urad = a T 4, convert your equation from (a) into one for T (r), and compare to
equation (11.9) in the text. (c) Turning to the opacity gap, the main sources of radiation
are the gas photosphere at Rg, which bounds the radiative precursor, and hot grains
at Rd, the dust destruction front. If we were to neglect emission from the latter and
consider points far from Rg, what would f be?

(d) More realistically, we should include emission from the dust destruction front,
although its temperature Td is less than Tg at the gas photosphere. Taking the two
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surfaces to be blackbodies at their respective temperatures, derive a more general
formula for f at any intermediate radius r. Verify that f has the expected behavior as
(i) Td approaches Tg, and (ii) Td ≪ Tg and r ≫ Rg. (Hint: Consider how Iν varies
over all possible µ-values at a fixed point within the opacity gap.)

4 - Protostars are fully convective from about 0.4 M⊙ to 2.4 M⊙. This range
encompasses the majority of all stars, according to the initial mass function. It is
therefore important to understand how stellar radii vary over this interval . According
to Figure 11.21, protostars first swell from deuterium burning, and then shrink because
of their self-gravity. A simple analytic model explains both effects.

(a) Integrate the heat equation (11.19) from the center of the star to the postshock
relaxation point, where you may set Lint ≈ 0. Assume that deuterium is burning at
the steady-state value given in equation (11.30). Recalling that the specific entropy s
is a spatial constant, write down an expression for the mass integral of T ds/dM∗.

(b) Since we want to obtain a mass-radius relation, expand ds/dM∗ in terms of partial
derivatives at fixed R∗ and M∗. From the theory of polytropes, to be introduced in
Chapter 16, the partial derivatives are

(

∂s

∂M∗

)

R∗

=
R

2µM∗

(

∂s

∂R∗

)

M∗

=
3R

2µR∗

.

By further using the relation derived in equations (16.25)-(16.27),

∫ M∗

0

T dMr =
2µGM2

∗

7RR∗

,

find a differential equation for R∗ as a function of M∗.

(c) Simplify your equation by defining the nondimensional quantities

m ≡ M∗

M◦

r ≡ 7 δ R∗

4GM◦

,

where M◦ is some fiducial mass. Integrate the nondimensional differential equation
analytically, and show that r(m) has the expected behavior.

5 - In 12.1, we briefly described density perturbations in a collapsing isothermal sphere.
Let us generalize this result and place it in the larger context of adiabatic perturbations.
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(a) Suppose that the pressure P varies as ργ , where γ is the ratio of specific heats at
constant pressure and volume. Using equation (9.23) together with the ideal gas law,
how does the Jeans length λJ vary with ρ?

(b) We may continue to assume that λ, the size of any perturbation of fixed mass, scales
as ρ−1/3. Find how the ratio λ/λJ scales with density.

(c) Summarize the behavior you expect for γ = 1, 4/3, and 5/3. Which perturbations
grow and which die away?

6 - We have seen that insight can be gained into binary origins by considering the
idealized problem of an infinite, self-gravitating, isothermal cylinder. Let us explore
basic properties of this configuration. The equation of hydrostatic balance is expressed
as a simple modification of equation (9.4):

ρ (̟) = ρc exp
(

−Φg/a
2

T

)

.

Poisson’s equation (9.3) becomes, in cylindrical coordinates,

∂2Φg

∂̟2
+

1

̟

∂Φg

∂̟
= 4 πGρ .

(a) Define the nondimensional radius ξ ≡ (4 πGρc/a
2

T )1/2̟ and the nondimensional
potential ψ ≡ Φg/a

2

T . Show that the above equations combine to yield

d2ψ

dξ2
+

1

ξ

dψ

dξ
= exp (−ψ) ,

with boundary conditions ψ(0) = ψ′(0) = 0.

(b) Verify that the above equation is solved analytically by

ψ = 2 ln (1 + ξ2/8) ,

and that this solution properly meets the two boundary conditions.

(c) Imagine that the cylinder is surrounded by a uniform pressure P◦. If ̟◦ is the
dimensional radius, define a new nondimensional one by ˜̟ ◦ ≡ (GP◦/a

4

T )1/2̟◦. Find
an algebraic expression for ˜̟ ◦ as a function of the center-to-edge density contrast
x ≡ ρc a

2

T/P◦.

(d) Show that ˜̟ ◦ tends to zero when either x is small (i.e., close to unity) or large. For
what value of the density contrast is ˜̟ ◦ a maximum? What is this maximum ˜̟ ◦?
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