
AY250 Assignment 5

due: Thursday, Nov 4, 2010

1 - In Sections 12.4 and 12.5, we used simple arguments to infer the fate of clouds
following mass loss that is fast or slow with respect to the dynamical time. In the
context of star formation, it is common to recast these results in terms of an efficiency
ǫ, the fraction of the original cloud mass that becomes stars.

(a) Suppose a cloud produces stars slowly. As these stars are born, they drive off a
portion of the cloud mass through their winds, until the final system consists of all
stars. As a function of ǫ, find the final-to-initial ratios of radius, velocity dispersion,
and mean density: Rf/Ri, Vf/Vi, and ρf/ρi. Here, the initial values refer to the starless
cloud, while final values pertain to the star cluster. As a specific example, determine
these three ratios for ǫ = 0.3.

(b) Now suppose the cloud produces its stars quickly, and that these stars
instantaneously blow off the ambient cloud gas. Find the above three ratios, again
as functions of ǫ. What are the ratios for ǫ = 0.6?

(c) The observed velocity dispersion of the Pleiades is about 0.5 km s−1. In contrast, a
typical velocity dispersion in a dark cloud is 1.5 km s−1. If the Pleiades formed rapidly,
what was ǫ, according to this model? What must ǫ have been if the cluster formed
slowly? How do these theoretical values compare with the observed star formation
efficiency in regions like Taurus?

2 - Let us explore a simple model for the HH 34 giant jet. Here, the speed of Herbig-
Haro knots declines linearly with distance. Thus, we can write for the jet velocity

dV

dr
= −

1

t◦
,

where r is the distance of the knot from the embedded star and t◦ is a constant with
dimensions of time.

(a) Suppose a knot leaves the central star at t′ = 0 with initial speed V◦. After it has
traveled a time t′, what is its speed V ?

(b) What is r∞, the radius the knot asymptotically reaches as t′ becomes infinite?

Suppose the jet source is rotating with angular speed ω as it emits knots into a plane.
After each knot leaves, it continues to travel outward along a straight radius. Thus, at
any time t, a knot located at angle θ has been traveling for a time

t′ = t − θ/ω .

1



(c) What is r(t, θ), the radial distance of a knot with angle θ at time t? Your expression
should involve r∞, ω, and t◦.

Define r′ ≡ r/r∞, γ ≡ 1/(ω t◦), and θ′ ≡ θ − ω t. The nondimensional function
r′(θ′), plotted in plane polar coordinates, is the shape of the curve made by all the
knots. This function contains the single parameter γ. Note that θ′ is negative; it varies
from -∞, for a source emitted in the remote past, to 0, for a source emitted recently.

(d) By plotting r′(θ′) for various γ-values, find one that gives an acceptable fit to the
HH 34 jet, as seen in Figure 13.7. Ignore any distortion in the observed curve due to
projection. Note that your curve represents one arm of the jet; the other is obtained by
rotation through 180◦.

(e) For the HH 34 jet, V◦ is observed to be 490 km s−1, and r∞ = 1.8 pc. What is T◦,
the rotation period of the jet source in years?

3 - As we noted in §13.4, the idea that disks generate winds faces the difficulty that
the same inward flow would spin up the star to unacceptably high rotation rates. This
problem can be avoided if the star, while accepting matter from the disk, still generates
its own wind. Using a simple model, the mass outflow in the wind is then proportional
to the mass inflow from the disk.

Let the accreting object be a low-mass, fully convective protostar, rigidly rotating at
rate Ω∗. This rate, we posit, is a fixed fraction of the breakup value:

Ω∗ = f

√

G M∗

R3
∗

,

where f ≪ 1. From Figure 11.6, it is approximately true that R∗ is proportional to
M∗, as a result of the deuterium thermostat.

(a) Show that, under these assumptions and approximations, the star’s equatorial
velocity Veq is a constant, independent of mass.

(b) The stellar angular momentum is given by

J∗ = β M∗ R2
∗

Ω∗ ,

where β is another constant (about 0.14). Express J∗ as a function of M∗ and Veq,
times the appropriate coefficients.

(c) Suppose that matter flowing in from the disk has somehow been forced into
corotation with the star. If Ṁin is the mass inflow rate, what is J̇in, the rate at which
angular momentum is being advected onto the star?

(d) Finally, let the specific angular momentum being carried outward by the wind be
γ Ω∗ R2

∗
, where the order-unity constant γ must be determined from wind theory. Let
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Ṁout be the mass efflux in this wind. Demand that Ṁin − Ṁout be the rate of stellar
mass increase Ṁ∗. Also demand that J̇in − J̇out be the rate of stellar angular momentum
increase J̇∗, where J∗ was determined in (b). Find the relation between Ṁout and Ṁin.
What are the limits on γ such that Ṁin > Ṁout?

4 - An interesting question is whether the masers observed in star-forming regions are
saturated or not. We may investigate the matter by deriving an expression for Ts, the
brightness temperature of a maser just at the point of saturation.

(a) Equation (14.10) gives the critical mean intensity J̄s. After neglecting the collisional
term in the numerator and setting gu = gl, obtain the corresponding specific intensity
Is.

(b) At the transition to saturation, Is = I. Using equation (14.1) to relate I and Ts,
find the desired expression for the latter quantity. It is simplest to cast Ts in terms of
ν◦, Aul, Γ, and the beaming solid angle ∆Ω.

(c) In a long, filamentary maser, we may set ∆Ω ≈ (d/s)2, where d is the filament
diameter and s the path length over which the radiation is amplified. Consider an OH
maser with ν◦ = 1665 MHz. Here, Aul = 7.1 × 10−11 s−1 and Γ = 0.03 s−1. If we
observe TB = 1013 K and d = 1014 cm, what is the path length required for saturation?
Can this length reasonably be attained?

(d) Now repeat this exercise for an H2O maser with ν◦ = 22 GHz. Here,
Aul = 1.9 × 10−9 s−1 and Γ = 1.0 s−1. If TB = 1014 K and d = 1013 cm, what is
the required length now? Is this an astrophysically plausible distance?

5 - The question of maser saturation may also be addressed by considering the observed
linewidths. As we have seen, the typical width of a 22 GHz H2O maser in W49 is
∆Vr = 0.5 km s−1. A representative brightness temperature, from equation (14.2) is
TB = 3 × 1015 K.

(a) Suppose the radiation, on its way from the source to us, is unsaturated. Let TB(0),
the background brightness temperature, be 3 K. What is the maser gain under these
circumstances?

(b) Still assuming the maser to be unsaturated, what is ∆Vr(0), the linewidth at the
source location?

(c) If this linewidth is created thermally, what is the temperature at the source? Is this
value realistic? How will saturation of the maser alter the situation?

6 - Some post-main-sequence giant stars excite OH maser emission primarily in the
1612 MHz line. The observed spectrum consists of two peaks, separated in velocity by
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20-50 km s−1. This kind of profile arises naturally if the emission stems from a spherical
gas shell, expanding away from the central star.

(a) The relatively thin shell, of mean radius R, is far enough from the star that it
coasts at V∞, the terminal value reached by the stellar wind. Consider a radial line
extending from the star to the shell, and deviating by an angle θ from the line of sight.
For each small angular increment ∆θ, maser emission is amplified over ∆L, the line
segment within the shell subtended by ∆θ and directed toward the observer. Write an
expression for ∆L.

(b) To maintain the velocity coherence necessary for maser amplification, the line-of-
sight velocity Vr must change by no more than the Doppler width ∆νD. Find an
expression for the maximal ∆θ that gives velocity coherence.

(c) Combining your answers from (a) and (b), find ∆L algebraically as a function of
Vr. For the typical values ∆vD = 0.5 km s−1 and V∞ = 15 km s−1, plot ∆L/R as a
function of Vr/V∞. If we interpret Vr as the line-of-sight velocity relative to the star, this
plot should mimic the observed spectrum of the source, provided the maser is saturated.
Do you see why?

(d) According to the model, maser emisison near the velocities ±V∞ should be seen as
two spots directly in line with the star. More generally, the model predicts that emission
at any Vr is located in a ring of radius a (Vr). Derive an expression for a (Vr).

(e) The giant star OH127.8-0.0, located at a distance of 3.3 kpc, exhibits the typical
double-peaked spectrum. The two peaks are separated in velocity by 22 km s−1.
Emission with Vr near 8.5 km s−1 is observed to be in a ring with an angular diameter
of 2′′. What is the physical radius R of the shell?
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