
Solutions to Star Formation Homework 5, Assigned by Steven Stahler

Nathaniel Roth

November 13, 2010

Problem 1

Part a

By definition
Mf

Mi
= ε (1)

Using equation 12.37
Rf
Ri

=
Mi

Mf
= 1/ε (2)

The virial theorem tells us
1
2
Mv2 =

ηGM2

2R
(3)

This directly leads to

v ∝
√
M

R
(4)

and so

vf
vi

=

√
Mf

Mi

Ri
Rf

= ε (5)

By definition

ρ ∝ M

R3
(6)

So
ρf
ρi

=
Mf

Mi

R3
i

R3
f

= ε4 (7)

So when epsilon = 0.3, we get

Rf
Ri

= 3.33
vf
vi

= 0.3
ρf
ρi

= 0.0081 (8)

Part b

The mass ejected ∆M can be expressed by

∆M = Mf −Mi = εMi −Mi = Mi(ε− 1) (9)
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Then from equation 12.40 we have

Rf
Ri

=
Mi +Mi(ε− 1)
Mi + 2[Mi(ε− 1)]

=
ε

2ε− 1
(10)

We can once again use the proportionality from expression 4, and the last result for the radii, to get

vf
vi

=

√
Mf

Mi

Ri
Rf

=
√

2ε− 1 (11)

For the densities we use expression 6 once more to get

ρf
ρi

=
Mf

Mi

R3
i

R3
f

=
(2ε− 1)3

ε2
(12)

So when epsilon = 0.6, we get

Rf
Ri

= 3.
vf
vi

= 0.447
ρf
ρi

= 0.022 (13)

Part c

From the data given we have vf/vi = 1/3. If the cluster formed slowly then for our model it would
obey vf/vi = ε and so we get ε = 1/3. If the cluster formed rapidly then for our model it would obey
vf/vi =

√
2ε− 1 and so we get ε = 5/9. Observations tell us that the value of epsilon corresponding to

star forming regions such as Taurus is only about a few percent, indicating that our simplified model
must be refined.

Problem 2

Part a

By the chain rule
dv

dt
=
dv

dr

dr

dt
= − v

t0
(14)

So we have a separable differential equation that can be integrated as follows:∫ t′

0

dv

v
=
∫ t′

0
−dt
t0

=⇒ ln v = − t

t0
+ C (15)

Exponentiating both sides of the last equality and using the condition v(0) = v0 gives

v = v0e
− t

t0 (16)

Part b

We can integrate the velocity from time 0 to infinity to get the asymptotic distance traveled:

r∞ =
∫ ∞

0
vdt = v0

∫ ∞
0

e−t/t0dt (17)

Making the change of variables x = t/t0 we obtain

r∞ = v0t0

∫ ∞
0

e−xdt = v0t0 (18)
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Part c

Once again we obtain an expression for position by integrating velocity

r = v0

∫ t′

0
e−t/t0dt = v0t0

(
− e−t′/t0 + 1

)
(19)

Now we use the definition of t′ in terms of θ and ω, along with our result from part a, to obtain

r

r∞
= 1− exp

[
− 1
t0

(
t− θ

ω

)]
= 1− exp

[
1
ωt0

(
θ − ωt

)]
(20)

In terms of the dimensionless variables this can be written as

r′ = 1− eγθ′
(21)

Part d

Figure 1 plots r′(θ′) for γ = 5 and for θ ranging between −7π/24 and 0, including the reflected branch.
We see that this provides a decent match to the image of HH 34 in the textbook.

Figure 1: Our model for HH34, with γ = 5. The tick marks are in units of r∞
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Part e

Using the definitions of γ and v0 we can solve for ω to obtain

ω =
v0
γr∞

(22)

But then since ω = 2π/T0, we have

T0 =
2πγr∞
v0

≈ 105 years (23)

where we used γ = 5 from our result in part d.

Problem 3

Part a

We know that R ∝M∗ in this case, so I will call the constant of proportionality α, i.e., R∗ = αM∗. It is
also true that Veq = R∗Ω. Making these substitutions into the given expression for Ω, and rearranging,
yields

Veq = f

√
G

α
(24)

So Veq is approximately constant and independent of mass, as claimed.

Part b

Making the substitutions for R∗ and using the expression for Veq from part a, we obtain

J∗ = αβM2
∗Veq (25)

Part c

Let us assume that as mass flows in it accumulates on the outer radius of the star, so that for a little
bit of added mass dM , its moment of inertia the instant it is added is dMR2. Let us also assume that
this mass dM is moving at speed Veq around the center of the star. So then the angular momentum
added is dMR∗Veq and the rate of angular momentum being accumulated is ṀinR∗Veq or ṀinVeqαM∗

Part d

We begin with
J̇∗ = J̇in − J̇out (26)

We can differentiate both sides of our result from part b with respect to time to obtain

J̇∗ = 2M∗Ṁ∗Veqαβ (27)

We also have the relations

Ṁ∗ = Ṁin − Ṁout (28)

J̇in = ṀinVeqαM∗ (29)

J̇out = γΩ∗R2
∗Ṁout = αγVeqM∗Ṁout (30)
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Putting everything together we obtain

2M∗(Ṁin − Ṁout)Veqαβ = ṀinVeqαM∗ − αγVeqM∗Ṁout (31)

After canceling, simplifying, and rearranging, we finally obtain

Ṁin =
2β − γ
2β − 1

Ṁout (32)

Note that both the numerator and the denominator in the fraction multipilying Ṁout are negative.
With that in mind, in order to have Ṁin > Ṁout, we must have γ > 1.

Problem 4

Part a

Our simplified expression for J̄s is

J̄s =
Γ

2Bul
(33)

We can then use the relation between intensity and mean flux to write

Is =
4πJ̄s
∆Ω

=
2πΓ
Bul∆Ω

(34)

Part b

Starting with equation 14.1 and plugging in our expression for I from part a we obtain

Ts =
c2πΓ

ν2
0kBBul∆Ω

(35)

We now use the Einstein relation relating Aul to Bul, as found in e.g. appendix B of the text:

Aul =
2hv3

0

c2
Bul (36)

After making the substitution and simplifying, we obtain

Ts =
(

4π
∆Ω

)(
Γ

2Aul

)(
hν0

kB

)
(37)

Part c

After rewriting ∆Ω in terms of s and d, and solving for s, we obtain

s =

√(
kBTs
hv0

)(
2Aul

Γ

)(
d2

4π

)
(38)

Now we use ν0 = 1665 Mhz, so that hν0/kB is 0.0799 Kelvin. We also have Γ/2Aul = 2.11 × 108,
Ts = 1013 Kelvin and d = 1014 cm. As a result, we compute

s ≈ 2.2× 1016 cm (39)

This is a plausible distance, since a typical HII region (where OH masers are produced) is at least 100
times larger.
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Part d

This time we use ν0 = 22 Ghz, so hν0/kB is 1.06 Kelvin. We have Γ/2Aul = 2.63 × 108, Ts = 1014

Kelvin and d = 1013 cm. So we compute s to be

s ≈ 1.7× 1015 cm (40)

Again, this is a plausible aamplification distance, since it is about the diameter of a stellar jet, the
environment for many H2O masers.

Problem 5

Part a

For two brightness temperatures T1 and T2, we can use equation 14.1 to derive the following relation:

T2

T1
=
I2
I1

(41)

In this case we can set T1 = 3 K and T2 = 3× 1015 K. Then T2/T1 = 1015. The maser gain (as per the
definition on page 503) is then lnT2/T1 = ln 1015 = 34.5.

Part b

From equation 14.26 we see that α0s is equal to the maser gain. So then using equation 14.28 we can
write

∆ν(s)
∆ν(0)

=

(
ln
[I(s)
I(0)

])−1/2

(42)

So the line has narrowed by a factor of approximately 5.9, and the linewidth at the source is
approximately 2.9 km s−1 .

Part c

For particles in thermal equilibrium at temperature T, the RMS speed in any given direction is
√
kBT/µ

where µ is the mean mass per particle. For water µ is approximately 3 × 10−23 grams. Setting the
speed from part b equal to this thermal speed gives a temperature of about 1.8 × 104 Kelvin. This
temperature is not realistic since water only forms in the cooling regions of shocks at about 500 Kelvin.
According to the text (p. 492), the expected linewidth at the source is close to the observed one of
0.5 kilometers per second. What happens is that the line begins to narrow, and then broadens, back
to its original value as a result of saturation (see p. 504).

Problem 6

Part a

Geometrical reasoning leads to the relation

cos[π/2− (θ + ∆θ))] =
R∆θ
∆L

(43)

We then solve for ∆L to first order in ∆θ to obtain

∆L =
R∆θ
sin θ

(44)
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Part b

The line-of-sight velocity V‖ is equal to V∞ cos θ. Thus, the difference in line-of-sight velocities measured
at angular positions θ and θ + ∆θ is

V∞[cos(θ + ∆θ)− θ] = V∞∆θ sin θ (45)

where once again we have kept the answer to first order in ∆θ. Setting this equal to the Doppler width
yields

∆θ =
∆vD
V∞

1
sin θ

(46)

Part c

Substituting our expression for ∆θ from part b into our expression from part a yields

∆L = R
∆vD
V∞

1
sin2 θ

= R
∆vD
V∞

1
1− cos2 θ

(47)

But we also know
cos θ =

Vr
V∞

(48)

So we can rearrange to obtain
∆L
R

=
∆νD
V∞

1
1− (Vr/V∞)2

(49)

Figure 2 shows a plot of ∆L/R vs. Vr/V∞. The observed spectrum should be proportional to what is
shown in figure 2, because when the maser emission is saturated its intensity goes up linearly with the
path length over which it is amplified, and because the observed emission frequencies will be Doppler
shifted by an amount proportional to how Vr changes.

Part d

We can use our result from part b to write ∆vD/V∞ = sin θ∆θ . Substituting this expression into our
answer from part c gives

∆L
∆θ

=
R sin θ

1− (Vr/V∞)2
(50)

But we also know from part a that
∆L
∆θ

=
R

sin θ
(51)

So combining the last two equations yields

sin2 θ = 1− (Vr/V∞)2 (52)

For a given θ, the observer sees a ring of radius a(θ) = R sin θ, and so

a(Vr) = R
√

1− (Vr/V∞)2 (53)

Part d

If we let d represent the distance to the maser and ∆φ represent its angular diameter as seen by the
observer, then we have the relation

(1/2)d∆φ = R
√

1− (Vr/V∞)2 (54)

We are given values for d, ∆φ, and Vr. We also know that V∞ will be half of the value of the velocity
difference of the two maser peaks. Solving for R and plugging in all the values gives a radius of
approximately 8× 1016 cm.
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Figure 2: The vertical axis is ∆L/R, the horizontal axis is Vr/V∞
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