
AY250 Assignment 6

due: Thursday, Nov 18, 2010

1 - The first expansion phase of an HII region ends once the high pressure of ionized
gas drives a shock wave into the surrounding cloud. This happens when the speed of
the expanding ionization front falls close to the sonic value. Let us derive the condition
more quantitatively.

(a) In the frame of the ionization front, let ρ◦, a◦, and u◦ be the mass density, isothermal
sound speed, and velocity, respectively, of neutral gas approaching the front. Similarly,
let ρ1, a1, and u1 be the analogous quantities in the ionized gas. By invoking mass
and momentum conservation across the ionization front, derive a quadratic equation for
u◦/u1.

(b) Solving this quadratic equation, show that either u◦ ≤ u− or u◦ ≥ u+. Here, u−

and u+ are two characteristic speeds that can be expressed in terms of a◦ and a1. Show
further that u+ u− = a2

◦.

(c) The shock first appears when u◦ falls to u+. At this point, the ionization and shock
fronts are moving at the same speed. For a1 ≫ a◦, find an approximate expression for
u+. The statement that both fronts move at speed u+ into the static, external medium
is a refined version of the condition stated at the beginning of the problem.

(d) Because gas must now cross the shock, it enters the ionization front at a speed lower

than u+. We need to check that this speed is allowed by the inequalities you derived
in (b). Let u∗ be the postshock speed in our reference frame, and ρ∗ the postshock
density. Using the jump conditions for an isothermal shock (see Appendix B), find u∗

in terms of a◦ and a1. Thereby show how the inequalities you proved in part (b) are
still satisfied.

2 - The terminal velocity of a radiatively accelerated wind is an appreciable fraction of
the star’s escape speed. To see why, note first, from Section 15.3, that the force due to
a single line is proportional to the flux F◦(r) times the combination (r2 u) du/dr. The
force due to many lines may be approximated by a power law:

frad =
C

r2

(

r2 u
du

dr

)

α

.

The dimensional constant C is related to the mass loss rate. The nondimensional α,
which lies between 0 and 1, depends on the optical thickness of the lines.

(a) Insert frad into the momentum equation (13.11), and neglect the thermal pressure
gradient. As was the case with a single line, the combination (r2 u) du/dr must be a
constant, which we shall denote D. Find an algebraic equation relating C, D, and M∗.
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(b) For a given value of α and C, there may be zero, one, or two D-values that satisfy
your equation. Find a relation between C and D that guarantees a single, unique
solution.

(c) Using this relation, find a differential equation for u(r). Solve the equation, assuming
u(R∗) = 0, where R∗ is the star’s radius.

(d) Find the relation between V∞ and the stellar escape speed for the typical value
α = 0.5.

3 - In deriving the mass loss rate from a photoevaporating globule, we assumed that
all of the incident, ionizing flux is absorbed at the base of the evaporative wind. We
now investigate the situation more carefully.

Suppose a globule of radius R is located a distance d from a massive star that emits
ionizing photons at the rate N∗. Let F◦ ≡ N∗/(4 π d2) be the ionizing photon flux
incident on the globule, and F1 the flux actually reaching the ionization front at the
base of the wind. Define the flux ratio q ≡ F◦/F1. Finally, define a nondimensional
photoevaporation parameter β as

β ≡
α′

rec F◦ R

u2
1

,

where u1, the speed at the wind base is approximately equal to a1, the sound speed in
the ionized gas. A high β-value means that a hydrogen atom can recombine many times
as it traverses the distance R.

(a) By suitable generalization of equation (15.54), derive an equation for q as a function
of β.

(b) Find both β and q numerically for the case R = 0.2 pc, N∗ = 1049 s−1, and
d = 1 pc. You may assume u1 = 10 km s−1.

(c) What is n1, the density at the wind base, under these circumstances?

(d) What is n◦, the cloud density immediately in front of the ionization front? (Hint:

Assume that the thermal pressure in the cloud, which has a temperature of 20 K, equals
the sum of thermal plus ram pressures in the wind.)

4 - Because of the flux sensitivity of telescopes, any survey of a young cluster can
only detect pre-main-sequence stars down to a certain minimum mass. Consider, for
example, a 3 Myr old cluster. If the observational sensitivity limit is 0.1 L⊙, what is the
lowest-mass star with exactly that age that can be seen? You may proceed as follows:

(a) Assuming the star in question to be fully convective, use equation (16.33) to find
the stellar radius R∗ as a function of time. You may utilize the simplified version of the
equation in the limit that τ ≫ 1.
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(b) Combine your answer with the blackbody relation, equation (16.9c), to find L∗ as
a function of Teff , M∗, and t.

(c) Finally, use your answer to Problem (16.2) to express Teff as a function of M∗.
Hence, find L∗ as a function only of M∗ and t. From this function, you may derive the
desired minimum mass.

(d) Of course, stars in a cluster are actually born over a range of time. Can a star of the
minimum mass you obtained be seen if it is just now appearing as an optically visible,
pre-main-sequence object?

5 - The luminosity of fully convective, pre-main-sequence stars is controlled by surface
conditions, such as the photospheric opacity. On the other hand, the luminosity of
radiative stars depends on their internal entropy gradient. It is therefore not surprising
that the time to approach the ZAMS, as measured by tKH, has a different mass-
sensitivity in the two cases.

(a) Begin with convective stars. Using scaling arguments, find the dependence of tKH on
M∗. Assume that Teff varies as Mn

∗ , where n ≈ 0.2. Assume also that all stars arrive
at the ZAMS with identical central temperatures.

(b) Next consider stars that approach the ZAMS along radiative tracks. Again, use
scaling arguments to find how tKH varies with M∗. Assume that the internal opacity
follows Kramers law, and that the final, central temperature is the same for all masses.

(c) Any protostar that contracts faster than it accretes gas from a surrounding cloud has
no pre-main-sequence phase. In such objects, tKH < tacc ≡ M∗/Ṁ . Use your result
from (b) to predict the critical transitional mass. Assume Ṁ = 1 × 10−5 M⊙ yr−1 and
use the known value of tKH for the Sun. How does your simple estimate compare with
detailed numerical results, as exemplified by Figure (16.2)?

6 - Let us see more quantitatively why the central temperature in a contracting brown
dwarf first rises, then peaks and falls. Along the way, we will obtain a simple estimate
for the maximum mass of such objects.

(a) Since brown dwarfs are fully convective, their internal structure is that of an
n = 3/2 polytrope. From the analysis in §16.2.3, derive the central pressure Pc as a
numerical coefficient β times a function of G, M∗, and the central density ρc. Evaluate
β numerically.

Your equation gives the central pressure required to resist self-gravity. In a brown dwarf,
this pressure arises from a partially degenerate gas. Here, we simplify by supposing
Pc to have two components: that of an ideal gas at the appropriate ρc and Tc, and
the pressure Pdeg from a fully degenerate electron gas, as given in the second form of
equation (16.54).
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(b) Given these assumptions, find an expression for Tc as a function of ρc. For simplicity,
set µ = 1 in the ideal gas pressure. Sketch the function Tc(ρc). You cannot truly plot
the function, since your expression contains the mass M∗, as yet unspecified.

(c) Find Tmax, the maximum central temperature attained by the brown dwarf, for any
mass M∗.

(d) What is the largest mass a brown dwarf can have? To find the answer numerically,
use the fact that the lowest temperature at which protons can fuse is about 2 × 106 K.
How does your answer compare with the correct result, 0.08 M⊙?
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