
AY250 Assignment 7

due: Thursday, Dec 2, 2010

1 - From observations of spectral veiling in a certain classical T Tauri star, one
finds that the total luminosity in ultraviolet and optical excess continuum radiation
is Lcont = 0.18 L⊙. Modeling the emission as arising from a hot slab, the temperature
of the slab required to produce the continuum emission is Tcont = 1.3 × 104 K. We may
interpret these results physically, under the assumption that the excess radiation arises
from infall onto the stellar surface.

This particular star has an observed spectral type of K7, corresponding to an effective
temperature of Teff = 4000 K. Applying a bolometric correction to the extinction-
corrected J-band flux, one finds a stellar luminosity of L∗ = 1.7 L⊙.

(a) What is the mass infall rate Ṁ onto the star?

(b) What is Vin, the infall velocity just above the stellar surface? Assume that gas
elements start at least several stellar radii from the surface. Compare your answer with
the infall speeds inferred from Figure (17.12) for the star S Cra.

(c) What fraction f of the star’s total surface area is covered by accretion hot spots?

2 - In equation (17.21), we found that LD, the luminosity impinging on a flat,
circumstellar disk, is about 0.2 times the full stellar value. Let us redo the derivation
more carefully, in order to obtain an exact result.

(a) Derive the propagation factor fθ quoted in equation (17.16).

(b) Equation (17.18) gives the flux Frad striking a point lying on the disk surface.
Integrate Frad, as given in the middle form of this equation, over the entire disk, thereby
obtaining LD. Take the inner disk radius to be R∗ and denote the outer one as ̟D.

(c) Find LD/L∗ in the limit that ̟D ≫ R∗. Compare your answer with the more
approximate equation (17.21).

3 - When discussing planet formation, we described how gas pressure within a dusty
disk creates sub-Keplerian orbital speeds and consquently a vertical shear. This shear,
in turn, drives turbulence that inhibits grain coagulation. Let us evaluate the departure
from Keplerian velocity in a typical disk.

Suppose the disk surface density declines as a power law

Σ(̟) = Σ◦ (̟/̟◦)
−n

,
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where ̟◦ is the inner radius, and where n > 0. Similarly, assume a power-law
temperature variation, with associated exponent q, as in equation (17.6).

(a) Suppose the disk is vertically isothermal at any radius ̟, and that the local sound
speed is aT . Find an expression for the midplane pressure Pc in terms of Σ(̟), aT , and
the Keplerian angular speed ΩKep.

(b) What is the radial variation of Pc? Specifically, find the index α, where

α ≡
̟

Pc

dPc

d̟
.

Express α in terms of n and q.

(c) It is the finite α-value that causes the orbital speeds uφ of fluid elements to be
sub-Keplerian. Let this velocity difference be ∆V ≡ |uφ − VKep|. Derive an expression
for ∆V /VKep in terms of α, a2

T , and VKep itself.

(d) Evaluate ∆V /VKep numerically at the Earth’s orbit. For this purpose, let q = 1/2
and n = 3/2, where the latter is the standard assumption for the minimum mass solar
nebula. Finally, assume a gas temperature of T = 300 K

4 - Consider more carefully how runaway growth occurs within a disk of planetesimals
orbiting a young star. Let ρs be the volumetric mass density of the swarm. Focus on a
relatively large planetesimal of mass M and radius R moving with speed v with respect
to the other objects. If this planetesimal is on a circular orbit, then v is the velocity
dispersion of the swarm.

(a) Find Ṁ , the rate at which M increases by colliding with other members of the
swarm. Note that the collision cross section is not just π R2, but is enhanced by
gravitational focusing. The enhancement factor depends on the Safronov number,
θ ≡ (1/2) (Vesc/v)

2
, where the escape speed Vesc ≡

√

2 G M/R. You may derive the
enhancement factor (as you already did in Problem 3.3) by considering energy and
angular momentum conservation.

(b) Over time, the density ρs changes along with h, the local scale height of the disk.
The latter is the distance over which the density falls by 1/e from its midplane value.
Assuming the velocity dispersion v is isotropic, find h in terms of v and the local circular
velocity Ω.

(c) The product ρs h ≡ Σ, which is the surface mass density, may be considered fixed.
Rewrite your expression for Ṁ in terms of R, Σ, Ω, amd θ.

(d) Let ρp be the internal density of the planetesimal, also a fixed quantity. From your

answer for (c), find the growth rate Ṙ. Verify that, if θ is held fixed, as in the traditional
Safronov theory, R(t) grows at a constant rate. This is not a runaway situation.
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(e) Suppose, however, that θ ≫ 1 and that v is constant in time. Consider two growing
planetesimals with radii R1(t) and R2(t). Show that, when R2 becomes a certain
function of the initial values R1(0) and R2(0), R1 runs away to infinity

5 - Nonhomologous contraction occurs when a star’s luminosity profile, Lint(Mr), peaks
internally, as exemplified in the t = 0 curve of Figure 18.7b. Here, you will calculate a
generic luminosity profile yourself.

Assume that Lint is Lrad, as given in equation (11.29). Take the opacity κ to
obey Kramers law (see Appendix G). Assume, moreover, that the star consists of a
monatomic, ideal gas, in which the specific entropy is a spatial constant.

(a) Show that Lint is a dimensional constant L1 times mp7/5, where m ≡ Mr/M∗ and
p ≡ P/P◦. Here, M∗ is the star’s total mass and P◦ its central pressure.

(b) We next need the dependence of p on m. We proceed indirectly, first finding the
spatial distribution of the density. Equations (10.26) and (11.14) govern the variation
of Mr(r) and P (r), respectively. Define a nondimensional density φ ≡ (ρ/ρ◦)

2/3, where
ρ◦ is the central value. Similarly, define a nondimensional radius ξ ≡ r/r◦, where

r◦ ≡

(

5 P◦

8 π G ρ2
◦

)1/2

.

By combining equations (10.26) and (11.14), find a nondimensional, second-order
differential equation for φ(ξ).

(c) Integrate this equation numerically, subject to the appropriate boundary conditions
at the star’s center. Plot the function φ(ξ).

(d) The function m(ξ) may be found from the nondimensional version of
equation (10.26). This nondimensional equation contains a coefficient that is a
combination of M∗, ρ◦, and r◦. By integrating analytically from the star’s center to its
edge, evaluate this coefficient.

(e) Now integrate numerically the equation for m(ξ) and plot the result.

(f) After finding an expression for p(φ), plot Lint/L1 as a function of m. This is the
desired luminosity profile.

6 - Let us see, in a quantitative way, why CNO burning in intermediate-mass stars
drives central convection. The energy generation rate from this process is

ǫCNO = 1.33 × 1027 erg gm−1 s−1

(

ρ

100 gm cm−3

) (

T

107 K

)−2/3

exp (−θ) ,
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where

θ ≡ 70.7

(

T

107 K

)−1/3

.

(a) Consider two ZAMS stars of 2 and 5 M⊙. Their central temperatures are
log Tc = 7.30 and 7.42, respectively. The corresponding central densities are
log ρc = 1.8 and 1.2, where ρc is in gm cm−3. Find ǫCNO numerically at the center
of these two objects.

(b) Central convection occur when the energy generation rate is sufficiently high, i.e.,
when ǫCNO > ǫcrit. Find an expression for ǫcrit from Lcrit in equation (11.29). Within
Lcrit itself, you may evaluate (∂T/∂P )S by assuming an ideal gas.

(c) Now evaluate ǫcrit numerically for the above two stars. For the opacity, use the
maximum of the appropriate Kramers law expression

κ = 2.0 cm2 gm−1

(

ρ

100 gm cm−3

) (

T

107 K

)−7/2

,

and the electron scattering opacity:

κ = 0.34 cm2 gm−1 .

Do both stars have central convection zones?
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