Cosmology Seminar

Tue, January 16, 2018

1:10 pm (Cosmology/ BCCP) 
Francois Lanusse, CMU 
Campbell 131 

Facing the challenges of modern cosmological surveys with deep learning 
The upcoming generation of cosmological surveys such as LSST or DESI will aim at shedding some much needed light on the physical nature of dark energy and dark matter by mapping the Universe in great detail and on an unprecedented scale. While this implies a great potential for discoveries, it also involves new and outstanding challenges at every step of the science analysis, from image processing to the modeling of astrophysical systematics. In this talk I will illustrate how recent advances in Deep Learning open new perspectives for addressing some of theses challenges and for exploiting this wealth of data in new and exciting ways. As a first example, I will present our work on automated strong gravitational lens detection, a problem where deep learning essential eliminates the need for human visual inspection (which would have intractable at the scale of LSST). In a second example of applications, I will illustrate how data driven deep generative models can be used to complement a physical modeling in two different cases: image simulations with realistic galaxy morphologies for the calibration of weak lensing shape measurement algorithms, and the production of mock galaxy catalogs with realistic intrinsic alignments learned from hydrodynamical simulations.